
Oracle® Rdb7 for OpenVMS
Release Notes

Release 7.0.5

April 2000

®

Oracle Rdb7 Release Notes, Release V7.0.5 for OpenVMS

Release 7.0.5

Copyright © 1984, 2000, Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information
of Oracle Corporation; they are provided under a license agreement containing restrictions on use
and disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any
problems in the documentation, please report them to us in writing. Oracle Corporation does not
warrant that this document is error free. Except as may be expressly permitted in your license
agreement for these Programs, no part of these Programs may be reproduced or transmitted in
any form or by any means, electronic or mechanical, for any purpose, without the express written
permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs
on behalf of the U.S. Government, the following notice is applicable:

RESTRICTED RIGHTS NOTICE

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted
computer software" and use, duplication, and disclosure of the Programs shall be subject to the
restrictions in FAR 52.227-19, Commercial Computer Software - Restricted Rights (June, 1987).
Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be the licensee’s responsibility to take all appropriate
fail-safe, backup, redundancy, and other measures to ensure the safe use of such applications if the
Programs are used for such purposes, and Oracle Corporation disclaims liability for any damages
caused by such use of the Programs.

Oracle is a registered trademark, and Oracle Rdb, Oracle SQL/Services, Rdb7, Oracle7, Oracle
Expert, and Oracle Rally are trademarks or registered trademarks of Oracle Corporation. All
other company or product names mentioned are used for identification purposes only and may be
trademarks of their respective owners.

This document was prepared using VAX DOCUMENT Version 2.1.

Contents

Preface . xiii

1 Installing Oracle Rdb7 Release 7.0.5

1.1 Requirements . 1–1
1.2 Invoking VMSINSTAL . 1–1
1.3 Stopping the Installation . 1–2
1.4 After Installing Oracle Rdb7 . 1–2
1.5 Alpha EV67 Processor Support Added . 1–2
1.6 Maximum OpenVMS Version Check Added . 1–2

2 Software Errors Fixed in Oracle Rdb7 Release 7.0.5

2.1 Software Errors Fixed That Apply to All Interfaces 2–1
2.1.1 Query Using Match Strategy Outline Returns Wrong Results 2–1
2.1.2 Database Recovery Process Bugchecks at

DIOCCHDBR$UNLATCH_GRCL + 00000398 2–2
2.1.3 Dynamic Optimizer Problem with Zigzag Match 2–2
2.1.4 DBR Bugcheck in DBR$RECOVER_RCS Due to AIJ Related

Database Shutdown . 2–3
2.1.5 Bugchecks at DIOCCH$FETCH_SNAP_SEG + 000005C4 2–3
2.1.6 Random Corrupt Pages on Fast Processors . 2–3
2.1.7 Wrong Results from 3-Way Join Using Cross/Zigzag_Match 2–4
2.1.8 Query Slowdown Caused by Subquery With MIN/MAX Functions 2–4
2.1.9 GROUP BY/HAVING Query From a View With LIMIT TO Clause

Returns Wrong Results . 2–5
2.1.10 Query Returns Wrong Results When the Sequence of Same Context

Predicates is Broken Up . 2–5
2.1.11 Wrong Results When GROUP BY Columns are NOT Leading Subset

of UNION Columns . 2–6
2.1.12 New Index Scan Algorithm Not Effective With Some Sorted Indices

. 2–7
2.1.13 Wrong Results From a View Query With Left Outer Join and

SUBSTRING Function . 2–8
2.1.14 Query With EXISTS and SUBSTRING Bugchecks 2–9
2.1.15 Memory Leak for Trigger Actions . 2–9
2.2 SQL Errors Fixed . 2–10
2.2.1 Incorrect Output in SHOW STORAGE AREA (USAGE) Display 2–10
2.3 Oracle RMU Errors Fixed . 2–10
2.3.1 RMU/BACKUP/AFTER/EDIT_FILE Keyword "YEAR" is Producing a

Value of 1999 . 2–11
2.3.2 RMU/SHOW STATS "Average Per Transaction" is Relative to

Epoch . 2–11
2.4 Hot Standby Errors Fixed . 2–12

iii

2.4.1 Hot Standby Performance Impact on Master Database is
Substantial . 2–12

3 Software Errors Fixed in Oracle Rdb7 Release 7.0.4

3.1 Software Errors Fixed That Apply to All Interfaces 3–1
3.1.1 RMU/LOAD into Temporary Table . 3–1
3.1.2 Divide by Zero Error in Query on Large Table 3–1
3.1.3 Wrong Results With COUNT DISTINCT CASE 3–2
3.1.4 Bugcheck at RDMS$$RDMSCHEMA_UNLOAD_META+40 on Drop

Area With Cascade . 3–2
3.1.5 Unexpected I/O During DROP and TRUNCATE TABLE 3–3
3.1.6 Incorrect Rounding of Negative Numbers in the Round Function 3–4
3.1.7 Ignored Join Order Led to Poor Query Performance 3–4
3.1.8 GROUP BY Query on a Distinct Subquery Returns Wrong Results . . . 3–4
3.1.9 After Image Journal File Format Change . 3–6
3.1.10 ORDER BY Ignored in Query With a Sub-select Statement 3–6
3.1.11 Query With Sort/Forward Scan Instead of Reverse Scan Slows

Down . 3–6
3.1.12 Query With Selection Predicates Over UNION Legs Returns Wrong

Results . 3–7
3.1.13 Left Outer Join View Query With CASE Statement Returns Wrong

Results . 3–8
3.1.14 Query Slower Using Cross Strategy and Outline Fails to Restore to

Match . 3–10
3.2 SQL Errors Fixed . 3–11
3.2.1 Unexpected UNSDATASS Error Reported by SQL Precompiler and

Module Language . 3–11
3.2.2 SQL IMPORT No Longer Evaluates Table and Column Constraints

. 3–11
3.2.3 Unexpected INVACC_OUT_PARA Error Generated by CREATE

MODULE . 3–11
3.2.4 Changed Behavior for CAST of Date/Time Values With Seconds Field

. 3–12
3.2.5 SQL Rejects Queries Which Use Column Named VALUE 3–14
3.3 Oracle RMU Errors Fixed . 3–14
3.3.1 RMU Extract Has Enhanced Extract of Conditional Expressions 3–14
3.3.2 RMU/REPLICATE AFTER START Command Fails on TCP/IP With

Large Port Numbers . 3–15
3.3.3 SHOW STATS Cannot Replay /OPTIONS=ROW_CACHE Input File

. 3–15
3.3.4 RMU/SHOW LOCKS Difficult to Identify Lock Conflict Culprit 3–16
3.3.5 RMU BACKUP to Tape Hung if Bad Checksum 3–18
3.3.6 RMU BACKUP to Tape Hung on QUIT Response to Wrong Label

Message . 3–19
3.3.7 RMU/REPAIR/INIT=FREE_PAGES/ABM Did Not Return an

Error . 3–19
3.3.8 Incorrect BADIDXREL Messages From Online RMU Verify 3–19
3.3.9 RMU VERIFY Did Not Find a .RDA File After an RMU MOVE 3–20
3.4 Row Cache Errors Fixed . 3–20
3.4.1 Row Cache Server Operator Notification . 3–20
3.4.2 Row Cache Did Not Avoid Certain Database Writes 3–21
3.4.3 RMU /CLOSE /WAIT Would Not Always Wait When Row Cache

Enabled . 3–21

iv

3.5 Hot Standby Errors Fixed . 3–21
3.5.1 RMU/REPLICATE AFTER START Command Fails Due to Lost AIJ

Write . 3–21

4 Documentation Corrections

4.1 Documentation Corrections . 4–1
4.1.1 Clarification of the DDLDONOTMIX Error Message 4–1
4.1.2 Compressed Sorted Index Entry Stored in Incorrect Storage Area . . . 4–2
4.1.3 Partition Clause is Optional on CREATE STORAGE MAP 4–4
4.1.4 Oracle Rdb Logical Names . 4–4
4.1.5 Waiting for Client Lock Message . 4–4
4.1.6 Documentation Error in Oracle Rdb7 Guide to Database Performance

and Tuning . 4–6
4.1.7 SET FLAGS Option IGNORE_OUTLINE Not Available 4–6
4.1.8 SET FLAGS Option INTERNALS Not Described 4–6
4.1.9 Documentation for VALIDATE_ROUTINE Keyword for SET

FLAGS . 4–7
4.1.10 Documentation for Defining the RDBSERVER Logical Name 4–7
4.1.11 Undocumented SET Commands and Language Options 4–8
4.1.11.1 QUIET COMMIT Option . 4–8
4.1.11.2 COMPOUND TRANSACTIONS Option . 4–9
4.1.12 Undocumented Size Limit for Indexes with Keys Using Collating

Sequences . 4–10
4.1.13 Changes to RMU/REPLICATE AFTER/BUFFERS Command 4–10
4.1.14 Change in the Way RDMAIJ Server is Set Up in UCX 4–11
4.1.15 CREATE INDEX Supported for Hot Standby . 4–12
4.1.16 Dynamic OR Optimization Formats . 4–12

5 Known Problems and Restrictions

5.0.1 Oracle Rdb and OpenVMS ODS-5 Volumes . 5–1
5.0.2 Clarification of the USER Impersonation Provided by the Oracle Rdb

Server . 5–1
5.0.3 Index STORE Clause WITH LIMIT OF Not Enforced in Single

Partition Map . 5–2
5.0.4 Unexpected NO_META_UPDATE Error Generated by DROP

MODULE ... CASCADE When Attached by PATHNAME 5–3
5.0.5 Unexpected DATEEQLILL Error During IMPORT With CREATE

INDEX or CREATE STORAGE MAP . 5–3
5.0.6 Application and Oracle Rdb Both Using SYS$HIBER 5–3
5.0.7 IMPORT Unable to Import Some View Definitions 5–4
5.0.8 AIJSERVER Privileges . 5–5
5.0.9 Lock Remastering and Hot Standby . 5–6
5.0.10 RDB_SETUP Privilege Error . 5–6
5.0.11 Starting Hot Standby on Restored Standby Database May Corrupt

Database . 5–6
5.0.12 Restriction on Compound Statement Nesting Levels 5–6
5.0.13 Back Up All AIJ Journals Before Performing a Hot Standby

Switchover Operation . 5–8
5.0.14 Concurrent DDL and Read-Only Transaction on the Same Table Not

Compatible . 5–8
5.0.15 Oracle Rdb and the SRM_CHECK Tool . 5–8
5.0.16 Oracle RMU Checksum_Verification Qualifier 5–9

v

5.0.17 Do Not Use HYPERSORT with RMU/OPTIMIZE/AFTER_JOURNAL
(Alpha) . 5–10

5.0.18 Restriction on Using /NOONLINE with Hot Standby 5–10
5.0.19 SELECT Query May Bugcheck with

PSII2SCANGETNEXTBBCDUPLICATE Error 5–10
5.0.20 DBAPack for Windows 3.1 is Deprecated . 5–10
5.0.21 Determining Mode for SQL Non-Stored Procedures 5–11
5.0.22 DROP TABLE CASCADE Results in %RDB-E-NO_META_UPDATE

Error . 5–13
5.0.23 Bugcheck Dump Files with Exceptions at COSI_CHF_SIGNAL 5–14
5.0.24 Interruptions Possible when Using Multistatement or Stored

Procedures . 5–14
5.0.25 Row Cache Not Allowed on Standby Database While Hot Standby

Replication Is Active . 5–15
5.0.26 Hot Standby Replication Waits when Starting if Read-Only

Transactions Running . 5–16
5.0.27 Error when Using the SYS$LIBRARY:SQL_FUNCTIONS70.SQL

Oracle Functions Script . 5–16
5.0.28 DEC C and Use of the /STANDARD Switch . 5–16
5.0.29 Excessive Process Page Faults and Other Performance Considerations

During Oracle Rdb Sorts . 5–17
5.0.30 Performance Monitor Column Mislabeled . 5–18
5.0.31 Restriction Using Backup Files Created Later than Oracle Rdb7

Release 7.0.1 . 5–18
5.0.32 RMU Backup Operations and Tape Drive Types 5–19
5.0.33 Use of Oracle Rdb from Shared Images . 5–19
5.0.34 Interactive SQL Command Line Editor Rejects Eight-Bit

Characters . 5–19
5.0.35 Restriction Added for CREATE STORAGE MAP on Table with

Data . 5–20
5.0.36 ALTER DOMAIN...DROP DEFAULT Reports DEFVALUNS Error . . . 5–20
5.0.37 Oracle Rdb7 Workload Collection Can Stop Hot Standby

Replication . 5–21
5.0.38 RMU Convert Command and System Tables . 5–22
5.0.39 Converting Single-File Databases . 5–22
5.0.40 Restriction when Adding Storage Areas with Users Attached to

Database . 5–22
5.0.41 Restriction on Tape Usage for Digital UNIX V3.2 5–23
5.0.42 Support for Single-File Databases to be Dropped in a Future

Release . 5–23
5.0.43 DECdtm Log Stalls . 5–23
5.0.44 Cannot Run Distributed Transactions on Systems with DECnet/OSI

and OpenVMS Alpha Version 6.1 or OpenVMS VAX Version 6.0 5–24
5.0.45 Multiblock Page Writes May Require Restore Operation 5–24
5.0.46 Oracle Rdb7 Network Link Failure Does Not Allow DISCONNECT to

Clean Up Transactions . 5–25
5.0.47 Replication Option Copy Processes Do Not Process Database Pages

Ahead of an Application . 5–25
5.0.48 SQL Does Not Display Storage Map Definition After Cascading Delete

of Storage Area . 5–26
5.0.49 ARITH_EXCEPT or Incorrect Results Using LIKE IGNORE

CASE . 5–26
5.0.50 Different Methods of Limiting Returned Rows from Queries 5–26

vi

5.0.51 Suggestions for Optimal Usage of the SHARED DATA DEFINITION
Clause for Parallel Index Creation . 5–27

5.0.52 Side Effect when Calling Stored Routines . 5–29
5.0.53 Nested Correlated Subquery Outer References Incorrect 5–30
5.0.54 Considerations when Using Holdable Cursors 5–32
5.0.55 INCLUDE SQLDA2 Statement Is Not Supported for SQL Precompiler

for PL/I in Oracle Rdb Release 5.0 or Higher . 5–33
5.0.56 SQL Pascal Precompiler Processes ARRAY OF RECORD Declarations

Incorrectly . 5–33
5.0.57 RMU Parallel Backup Command Not Supported for Use with SLS . . . 5–34
5.0.58 Oracle RMU Commands Pause During Tape Rewind 5–34
5.0.59 TA90 and TA92 Tape Drives Are Not Supported on Digital UNIX 5–34
5.1 Oracle CDD/Repository Restrictions . 5–34
5.1.1 Oracle CDD/Repository Compatibility with Oracle Rdb Features 5–34
5.1.2 Multischema Databases and CDD/Repository 5–36
5.1.3 Interaction of Oracle CDD/Repository Release 5.1 and Oracle RMU

Privileges Access Control Lists . 5–36
5.1.3.1 Installing the Corrected CDDSHR Images 5–38
5.1.3.2 CDD Conversion Procedure . 5–38

6 Enhancements

6.1 Enhancements Provided in Oracle Rdb7 Release 7.0.5 6–1
6.1.1 SHOW STATISTIC "Checkpoint Analysis" Screen 6–1
6.1.2 RMU Show Statistic "Online Analysis Logfile" Facility 6–3
6.1.3 New OPTIMIZE Clause DML Statements . 6–4
6.1.4 New RMU /RECLAIM Command . 6–5
6.1.5 New RMU /SERVER RECORD_CACHE CHECKPOINT Command . . 6–5
6.1.6 RCS Cycles TID Value at Checkpoint Completion 6–5
6.1.7 New Option for the GET DIAGNOSTICS

Statement/HOT_STANDBY_MODE . 6–6
6.1.8 New Option for the GET DIAGNOSTICS

Statement/TRANSACTION_CHANGE_ALLOWED
. 6–6

6.1.9 New Hot Standby Logicals . 6–7
6.2 Enhancements Provided in Oracle Rdb7 Release 7.0.4 6–8
6.2.1 Suggestion To Increase Field Size On RMU SHOW STATISTIC 6–8
6.2.2 SHOW STATS "Logical Area Overview" Enhancements 6–9
6.2.3 RCS Can Map All Caches at Database Open . 6–10
6.2.4 Performance Enhancements When Number of Cluster Nodes is 1 6–10
6.2.5 New ROW LENGTH Default Calculated for CREATE CACHE 6–11
6.2.6 RMU /CHECKPOINT /WAIT /UNTIL . 6–12
6.2.7 RMU Extract Supports New AUDIT_COMMENT Option 6–12
6.2.8 Revised Oracle Rdb for OpenVMS Client Kit . 6–12

7 LogMiner for Rdb

7.1 RMU Set Logminer Command . 7–1
7.2 RMU Unload After_Journal Command . 7–3
7.3 Restrictions and Limitations with LogMiner for Rdb 7–11
7.4 Information Returned by LogMiner for Rdb . 7–12
7.5 Record Definition Prefix for LogMiner Fields . 7–13
7.6 SQL Table Definition Prefix for LogMiner Fields . 7–13
7.7 Segmented String Columns . 7–14

vii

7.8 Additional Examples . 7–14
7.8.1 Example .rrd for the EMPLOYEES Table . 7–14
7.8.2 Callback Module for the EMPLOYEES Table 7–15
7.8.3 Using LogMiner and the RMU Load Command to Replicate Table

Data . 7–16
7.8.4 Using LogMiner to Minimize Application Downtime for

Maintenance . 7–18
7.8.5 Using an OpenVMS Pipe . 7–19

A Implementing Row Cache

A.1 Overview . A–1
A.1.1 Introduction . A–1
A.1.2 Database Functions Using Row Cache . A–2
A.1.3 Writing Modified Rows to Disk . A–3
A.1.4 Row Cache Checkpointing and Sweeping . A–4
A.1.5 Node and Process Failure Recovery . A–5
A.1.5.1 Process Failure . A–6
A.1.5.2 Node Failure . A–6
A.1.5.3 The RCS Process and Database Recovery A–8
A.1.6 Considerations When Using the Row Cache Feature A–8
A.2 Requirements for Using Row Caches . A–10
A.3 Designing and Creating a Row Cache . A–10
A.3.1 Reserving Slots for Row Caches . A–10
A.3.2 Row Cache Types . A–11
A.3.2.1 Assigning Storage Areas to Row Caches . A–12
A.3.2.2 Assigning Tables to Row Caches . A–12
A.3.3 Sizing a Row Cache . A–13
A.3.4 Choosing Memory Location . A–15
A.3.4.1 Sizing Considerations . A–18
A.4 Using Row Cache . A–19
A.4.1 Enabling and Disabling Row Cache . A–20
A.4.2 Specifying Checkpointing and Sweeping Options A–20
A.4.2.1 Choosing the Checkpoint Source and Target Options A–20
A.4.2.2 Choosing the Checkpoint Interval . A–22
A.4.2.3 Specifying Sweeping Parameters . A–22
A.4.2.4 Specifying the Size and Location of the Cache Backing File A–23
A.4.3 Controlling What is Cached in Memory . A–24
A.4.3.1 Row Replacement Strategy . A–24
A.4.3.2 Inserting Rows into a Cache . A–24
A.5 Examining Row Cache Information . A–27
A.5.1 RMU Show Statistics Screens and Row Caching A–31
A.6 Examples . A–32
A.6.1 Loading a Logical Area Cache . A–32
A.6.2 Caching Database Metadata . A–32
A.6.3 Caching a Sorted Index . A–34

viii

B Row Cache Statements

B.1 ALTER DATABASE Statement . B–1
B.1.1 Overview . B–1
B.1.2 Environment . B–1
B.1.3 Format . B–2
B.1.4 Arguments . B–4
B.1.4.1 RECOVERY JOURNAL (BUFFER MEMORY IS {LOCAL |

GLOBAL}) . B–4
B.1.4.2 RESERVE n CACHE SLOTS . B–4
B.1.4.3 CACHE USING row-cache-name . B–5
B.1.4.4 NO ROW CACHE . B–5
B.1.4.5 ROW CACHE IS ENABLED/ROW CACHE IS DISABLED B–5
B.1.4.5.1 CHECKPOINT TIMED EVERY N SECONDS B–5
B.1.4.5.2 CHECKPOINT ALL ROWS TO BACKING FILE/

CHECKPOINT UPDATED ROWS TO BACKING FILE/
CHECKPOINT UPDATED ROWS TO DATABASE B–6

B.1.4.5.3 LOCATION IS directory-spec . B–6
B.1.4.5.4 NO LOCATION . B–6
B.1.4.6 ADD CACHE clause . B–6
B.1.4.6.1 ALLOCATION IS n BLOCK/ALLOCATION IS n BLOCKS . . . B–6
B.1.4.6.2 CACHE SIZE IS n ROW/CACHE SIZE IS n ROWS B–7
B.1.4.6.3 CHECKPOINT ALL ROWS TO BACKING FILE/

CHECKPOINT UPDATED ROWS TO BACKING FILE/
CHECKPOINT UPDATED ROWS TO DATABASE B–7

B.1.4.6.4 EXTENT IS n BLOCK/EXTENT IS n BLOCKS B–7
B.1.4.6.5 LARGE MEMORY IS ENABLED/LARGE MEMORY IS

DISABLED . B–7
B.1.4.6.6 LOCATION IS directory-spec . B–8
B.1.4.6.7 NO LOCATION . B–8
B.1.4.6.8 NUMBER OF RESERVED ROWS IS n B–8
B.1.4.6.9 NUMBER OF SWEEP ROWS IS n . B–8
B.1.4.6.10 ROW LENGTH IS n BYTE/ROW LENGTH IS n BYTES B–8
B.1.4.6.11 ROW REPLACEMENT IS ENABLED/ROW REPLACEMENT

IS DISABLED . B–8
B.1.4.6.12 SHARED MEMORY IS SYSTEM/SHARED MEMORY IS

PROCESS . B–9
B.1.4.6.13 WINDOW COUNT IS n . B–9
B.1.4.7 ALTER CACHE row-cache-name . B–9
B.1.4.7.1 row-cache-params . B–9
B.1.4.7.2 DROP CACHE row-cache-name CASCADE B–9
B.1.4.7.3 DROP CACHE row-cache-name RESTRICT B–9
B.2 CREATE DATABASE . B–9
B.2.1 Overview . B–9
B.2.2 Environment . B–10
B.2.3 Format . B–10
B.2.4 Arguments . B–12
B.2.4.1 RECOVERY JOURNAL (BUFFER MEMORY IS {LOCAL |

GLOBAL}) . B–12
B.2.4.2 CACHE USING row-cache-name . B–12
B.2.4.2.1 NO ROW CACHE . B–13
B.2.4.3 RESERVE n CACHE SLOTS . B–13
B.2.4.4 ROW CACHE IS ENABLED/ROW CACHE IS DISABLED B–13
B.2.4.4.1 CHECKPOINT TIMED EVERY N SECONDS B–13
B.2.4.4.2 CHECKPOINT ALL ROWS TO BACKING FILE/

ix

CHECKPOINT UPDATED ROWS TO BACKING FILE/
CHECKPOINT UPDATED ROWS TO DATABASE B–13

B.2.4.4.3 LOCATION IS directory-spec . B–14
B.2.4.4.4 NO LOCATION . B–14
B.3 CREATE CACHE Clause . B–14
B.3.1 Environment . B–14
B.3.2 Format . B–14
B.3.3 Arguments . B–15
B.3.3.0.1 CACHE row-cache-name . B–15
B.3.3.0.2 ALLOCATION IS n BLOCK/ALLOCATION IS n BLOCKS . . . B–15
B.3.3.0.3 EXTENT IS n BLOCK/EXTENT IS n BLOCKS B–15
B.3.3.0.4 CACHE SIZE IS n ROW/CACHE SIZE IS n ROWS B–15
B.3.3.0.5 CHECKPOINT ALL ROWS TO BACKING FILE/

CHECKPOINT UPDATED ROWS TO BACKING FILE/
CHECKPOINT UPDATED ROWS TO DATABASE B–16

B.3.3.0.6 LARGE MEMORY IS ENABLED/LARGE MEMORY IS
DISABLED . B–16

B.3.3.0.7 ROW REPLACEMENT IS ENABLED/ROW REPLACEMENT
IS DISABLED . B–16

B.3.3.0.8 LOCATION IS directory-spec . B–16
B.3.3.0.9 NO LOCATION . B–17
B.3.3.0.10 NUMBER OF RESERVED ROWS IS n B–17
B.3.3.0.11 NUMBER OF SWEEP ROWS IS n . B–17
B.3.3.0.12 ROW LENGTH IS n BYTE/ROW LENGTH IS n BYTES B–17
B.3.3.0.13 SHARED MEMORY IS SYSTEM/SHARED MEMORY IS

PROCESS . B–17
B.3.3.0.14 WINDOW COUNT IS n . B–17
B.3.4 Usage Notes . B–18

C Release Notes Relating to the Row Cache Feature

C.1 Software Errors Fixed That Apply to All Interfaces C–1
C.1.1 RCS Maximum Log File Size Control Logical C–1
C.1.2 New RMU /SET ROW_CACHE [/ENABLE | /DISABLE]

Command . C–1
C.1.3 RCS Clearing "GRIC" Reference Counts . C–1
C.1.4 Row Cache RDC File Name Change . C–2
C.1.5 VLM or System Space Buffer Corruption . C–3
C.1.6 Invisible Row After Erase and Store With Row Cache C–3
C.1.7 Overriding RCS Checkpoint Timer Interval . C–4
C.1.8 Refresh RCS Metadata Information . C–4
C.1.9 RCS ACCVIO When Checkpointing All Row Caches to Database C–4

D Known Problems and Restrictions Relating to the Row Cache
Feature

D.1 Known Problems and Restrictions . D–1
D.1.1 RMU Online Verification Operations and Row Cache D–1
D.1.2 Limitation: Online RMU /VERIFY and Row Cache D–1
D.1.3 Adding Row Caches Requires Exclusive Database Access D–2
D.1.4 Conflicts When Caching Metadata and Executing Certain SQL

Database Operations . D–2

x

E Logical Names Relating to the Row Cache Feature

E.1 RDM$BIND_CKPT_FILE_SIZE . E–1
E.2 RDM$BIND_CKPT_TIME . E–1
E.3 RDM$BIND_DBR_UPDATE_RCACHE . E–1
E.4 RDM$BIND_RCACHE_INSERT_ENABLED . E–1
E.5 RDM$BIND_RCACHE_LATCH_SPIN_COUNT . E–1
E.6 RDM$BIND_RCACHE_RCRL_COUNT . E–2
E.7 RDM$BIND_RCS_BATCH_COUNT . E–2
E.8 RDM$BIND_RCS_CARRYOVER_ENABLED . E–2
E.9 RDM$BIND_RCS_CKPT_COLD_ONLY . E–2
E.10 RDM$BIND_RCS_CKPT_BUFFER_CNT . E–2
E.11 RDM$BIND_RCS_CKPT_TIME . E–2
E.12 RDM$BIND_RCS_CLEAR_GRICS_DBR_CNT . E–2
E.13 RDM$BIND_RCS_CREATION_IMMEDIATE . E–3
E.14 RDM$BIND_RCS_KEEP_BACKING_FILES . E–3
E.15 RDM$BIND_RCS_LOG_FILE . E–3
E.16 RDM$BIND_RCS_LOG_HEADER . E–3
E.17 RDM$BIND_RCS_LOG_REOPEN_SIZE . E–3
E.18 RDM$BIND_RCS_LOG_REOPEN_SECS . E–3
E.19 RDM$BIND_RCS_PRIORITY . E–3
E.20 RDM$BIND_RCS_SWEEP_COUNT . E–4
E.21 RDM$BIND_RCS_VALIDATE_SECS . E–4
E.22 RDM$BIND_RUJ_GLOBAL_SECTION_ENABLED E–4

Examples

A–1 Sizing a Row Cache in a Global Section or System Space Buffer A–19
A–2 Sizing a Row Cache in VLM . A–19
A–3 Sizing a Row Cache in Memory with VLM Enabled A–19
A–4 Row Cache Parameters . A–28

Tables

4–1 Object Type Values . 4–5
5–1 Oracle CDD/Repository Compatibility for Oracle Rdb Features 5–35
7–1 Output Fields . 7–12
A–1 Memory Locations of Row Cache Objects . A–17
A–2 Checkpoint Target Options . A–21

xi

Preface

Purpose of This Manual
This manual contains release notes for Oracle Rdb7 Release 7.0.5. The
notes describe changed and enhanced features; upgrade and compatibility
information; new and existing software problems and restrictions; and software
and documentation corrections. These release notes cover both Oracle Rdb7 for
OpenVMS Alpha and Oracle Rdb7 for OpenVMS VAX, which are referred to by
their abbreviated name, Oracle Rdb7.

Intended Audience
This manual is intended for use by all Oracle Rdb7 users. Read this manual
before you install, upgrade, or use Oracle Rdb7 Release 7.0.5.

Document Structure
This manual consists of twelve chapters:

Chapter 1 Describes how to install Oracle Rdb7 Release 7.0.5.

Chapter 2 Describes software errors corrected in Oracle Rdb7 Release 7.0.5.

Chapter 3 Describes software errors corrected in Oracle Rdb7 Release 7.0.4.

Chapter 4 Provides information not currently available in the Oracle Rdb7
documentation set.

Chapter 5 Describes problems, restrictions, and workarounds known to exist in
Oracle Rdb7 Release 7.0.5.

Chapter 6 Describes enhancements introduced in Oracle Rdb7 Releases 7.0.5 and
7.0.4.

Chapter 7 Introduction to the new LogMiner for Oracle Rdb features available in
Release 7.0.4 and beyond.

Appendix A Describes the Row Cache feature and functionality which was added in
Oracle Rdb7 Release 7.0.1.5.

Appendix B Describes the Row Cache Statements available in Oracle Rdb7 Release
7.0.1.5 and beyond.

Appendix C Describes software errors relating to the Row Cache feature that have
been corrected in Oracle Rdb7 Release 7.0.1.5 and beyond.

Appendix D Describes problems and restrictions relating to the Row Cache feature
known to exist in Oracle Rdb7 Release 7.0.1.5 and beyond.

Appendix E Describes the logical names relating specifically to the Row Cache
feature that are available in Oracle Rdb7 Release 7.0.1.5 and beyond.

xiii

1
Installing Oracle Rdb7 Release 7.0.5

This software update is installed using the standard OpenVMS Install Utility.

1.1 Requirements
The following conditions must be met in order to install this software update:

• Oracle Rdb7 must be shutdown before you install this update kit. That is,
the command file SYS$STARTUP:RMONSTOP(70).COM should be executed
before proceeding with this installation. If you have an OpenVMS cluster, you
must shutdown all versions of Oracle Rdb7 on all nodes in the cluster before
proceeding.

• The installation requires approximately 100,000 free blocks on your system
disk for OpenVMS VAX systems; 200,000 blocks for OpenVMS Alpha systems.

1.2 Invoking VMSINSTAL
To start the installation procedure, invoke the VMSINSTAL command procedure:

@SYS$UPDATE:VMSINSTAL variant-name device-name OPTIONS N

variant-name

The variant names for the software update for Oracle Rdb7 Release 7.0.5 are:

• RDBSE070 for Oracle Rdb7 for OpenVMS VAX standard version.

• RDBASE070 for Oracle Rdb7 for OpenVMS Alpha standard version.

• RDBMVE070 for Oracle Rdb7 for OpenVMS VAX multiversion.

• RDBAMVE070 for Oracle Rdb7 for OpenVMS Alpha multiversion.

device-name

Use the name of the device on which the media is mounted.

• If the device is a disk drive, such as a CD-ROM reader, you also need to
specify a directory. For CD-ROM distribution, the directory name is the same
as the variant name. For example:

DKA400:[RDBSE070.KIT]

• If the device is a magnetic tape drive, you need to specify only the device
name. For example:

MTA0:

OPTIONS N

This parameter prints the release notes.

Installing Oracle Rdb7 Release 7.0.5 1–1

The following example shows how to start the installation of the VAX standard
kit on device MTA0: and print the release notes:

$ @SYS$UPDATE:VMSINSTAL RDBSE070 MTA0: OPTIONS N

1.3 Stopping the Installation
To stop the installation procedure at any time, press Ctrl/Y. When you press
Ctrl/Y, the installation procedure deletes all files it has created up to that point
and exits. You can then start the installation again.

If VMSINSTAL detects any problems during the installation, it notifies you
and a prompt asks if you want to continue. You might want to continue the
installation to see if any additional problems occur. However, the copy of Oracle
Rdb7 installed will probably not be usable.

1.4 After Installing Oracle Rdb7
This update provides a new Oracle Rdb7 Oracle TRACE facility definition. Any
Oracle TRACE selections that reference Oracle Rdb7 will need to be redefined
to reflect the new facility version number for the updated Oracle Rdb7 facility
definition, ‘‘RDBVMSV7.0-5’’.

If you have Oracle TRACE installed on your system and you would like to collect
for Oracle Rdb7, you must insert the new Oracle Rdb7 facility definition included
with this update kit.

The installation procedure inserts the Oracle Rdb7 facility definition into a
library file called EPC$FACILITY.TLB. To be able to collect Oracle Rdb7 event-
data using Oracle TRACE, you must move this facility definition into the Oracle
TRACE administration database. Perform the following steps:

1. Extract the definition from the facility library to a file (in this case,
RDBVMS.EPC$DEF).

$ LIBRARY /TEXT /EXTRACT=RDBVMSV7.0-5 -
_$ /OUT=RDBVMS.EPC$DEF SYS$SHARE:EPC$FACILITY.TLB

2. Insert the facility definition into the Oracle TRACE administration database.

$ COLLECT INSERT DEFINITION RDBVMS.EPC$DEF /REPLACE

Note that if you are installing the multiversion variant of Oracle Rdb7, the
process executing the INSERT DEFINITION command must use the version
of Oracle Rdb7 that matches the version used to create the Oracle TRACE
administration database or the INSERT DEFINITION command will fail.

1.5 Alpha EV67 Processor Support Added
As of this release of Rdb7, Oracle Rdb7 Release 7.0.5, the Alpha EV67 processor
is supported.

1.6 Maximum OpenVMS Version Check Added
As of Oracle Rdb7 Release 7.0.1.5, a maximum OpenVMS version check has
been added to the product. Oracle Rdb has always had a minimum OpenVMS
version requirement. With 7.0.1.5 and for all future Oracle Rdb releases, we have
expanded this concept to include a maximum VMS version check and a maximum
supported processor hardware check. The reason for this check is to improve
product quality.

1–2 Installing Oracle Rdb7 Release 7.0.5

OpenVMS Version 7.2-n is the maximum supported version of OpenVMS.

As of Oracle Rdb7 Release 7.0.3, the Alpha EV6 processor is supported. As of
Oracle Rdb7 Release 7.0.5, the Alpha EV67 processor is supported.

The check for the OpenVMS operating system version and supported hardware
platforms is performed both at installation time and at runtime. If either a
non-certified version of OpenVMS or hardware platform is detected during
installation, the installation will abort. If a non-certified version of OpenVMS or
hardware platform is detected at runtime, Oracle Rdb will not start.

Installing Oracle Rdb7 Release 7.0.5 1–3

2
Software Errors Fixed in Oracle Rdb7 Release

7.0.5

This chapter describes software errors that are fixed by Oracle Rdb7 Release
7.0.5.

2.1 Software Errors Fixed That Apply to All Interfaces
2.1.1 Query Using Match Strategy Outline Returns Wrong Results

Bug 974665

The following query returns wrong results when the match strategy outline is
used.

select s.proj_code, s.title_code, s.site_code,
s.scan_ind, s.plan_date, t.bid_date

from sdp s,
tcd t

where s.proj_code = t.proj_code and
s.title_code = t.title_code and
s.site_code = ’CLEV’ and
s.scan_ind = ’Y’ and
t.bid_date is null;

~S: Outline "QO_ZIGZAG_MATCH" used
Conjunct
Match

Outer loop
Sort Conjunct Index only retrieval of relation SDP

Index name SDP_IDX [1:1]
Inner loop (zig-zag)

Index only retrieval of relation TCD
Index name TCD_IDX [1:1]

S.PROJ_CODE S.TITLE_CODE S.SITE_CODE S.SCAN_IND
S.PLAN_DATE T.BID_DATE

980620259 @@@ CLEV Y
9-AUG-1999 00:00:00.00 NULL

1 row selected

The NULL predicate column "bid_date" is not part of the index SDP_IDX, which
is defined as follows:

create index SDP_IDX on SDP
(SITE_CODE, PLAN_DATE,

SCAN_IND, BID_PCT desc,
PROJ_CODE, TITLE_CODE)

type is SORTED;
commit work;

Software Errors Fixed in Oracle Rdb7 Release 7.0.5 2–1

The outline is defined to use match instead of cross as follows:

create outline QO_ZIGZAG_MATCH
id ’CDBFC4B343409886D2FC605C40761388’
mode 0
as (

query (
subquery (

SDP 0 access path index SDP_IDX
join by match to

TCD 1 access path index TCD_IDX
)

)
)

compliance mandatory
execution options (any);

Workarounds for this problem are to use the SQL SET FLAGS ’NOZIGZAG_
MATCH’ command to turn off zigzag match or to delete the outline.

This problem has been corrected in Oracle Rdb7 Release 7.0.5.

2.1.2 Database Recovery Process Bugchecks at
DIOCCHDBR$UNLATCH_GRCL + 00000398

In very rare cases of process failure when using the row cache feature, it was
possible for an Oracle Rdb7 Database Recovery (DBR) to fail with an exception
within DIOCCHDBR$UNLATCH_GRCL (typically at offset 00000398).

This bugcheck was due to an incorrect check while releasing a row cache latch for
the failed process.

This problem has been corrected in Oracle Rdb7 Release 7.0.5. The DBR process
now correctly validates the hash table slot number.

2.1.3 Dynamic Optimizer Problem with Zigzag Match
In some queries utilizing zigzag match retrieval, a problem with the interaction
of the zigzag match and the dynamic optimizer may cause the query to fail to
deliver appropriate records.

The queries affected contain a join of two or more tables where the optimizer
has chosen to utilize a zigzag match retrieval strategy and dynamic optimization
(LEAF) retrieval of data for the inner leg of the match.

The following is an example of the type of strategy associated with the affected
queries.

Match
Outer loop (zig-zag)

Conjunct Get Retrieval by index of relation TABLE1
Index name TABLE1_INDEX_01 [1:1]

Inner loop (zig-zag)
Leaf#02 Sorted TABLE2 Card=128800

FgrNdx TABLE2_INDEX_01 [0:0] Fan=41
BgrNdx1 TABLE2_INDEX_02 [0:0] Fan=27

A problem in the delivery of data by the inner leg of the match from the dynamic
optimizer data buffers prevented the appropriate match records in the outer leg
from being found.

2–2 Software Errors Fixed in Oracle Rdb7 Release 7.0.5

A workaround for the problem is to use the RDMS$DISABLE_ZIGZAG_MATCH
logical name or the SQL SET FLAGS statement to disable zigzag match.

VMS> define RDMS$DISABLE_ZIGZAG_MATCH 2

or

SQL> set flags ’nozigzag_match’;

Alternatively, dynamic optimization may be disabled by using the RDMS$MAX_
STABILITY logical name or the SQL SET FLAGS statement:

VMS> define RDMS$MAX_STABILITY "TRUE"

or

SQL> set flags ’max_stability’;

This problem has been corrected in Oracle Rdb7 Release 7.0.5.

2.1.4 DBR Bugcheck in DBR$RECOVER_RCS Due to AIJ Related Database
Shutdown

When the Oracle Rdb7 Row Cache Feature was enabled, the database recovery
(DBR) server required that after image journaling was enabled and in a ‘‘normal’’
state. However, in extreme cases, such as after image journaling being shut down
due to no more available journals, the DBR process would bugcheck leaving the
database unuseable.

This problem has been corrected in Oracle Rdb7 Release 7.0.5. The DBR process
is now more tolerant of the AIJ state.

2.1.5 Bugchecks at DIOCCH$FETCH_SNAP_SEG + 000005C4
In rare cases of process failure when using the row cache feature, it was possible
for other processes to later fail with an exception within DIOCCH$FETCH_
SNAP_SEG (typically at offset 000005C4). This problem was discovered during
internal testing and was not customer reported.

This bugcheck was due to incorrectly storing a snapshot page pointer in the row
cache prior to writing the snapshot page back to the database. If the process
failed between these two events, other users of the database could read an invalid
snapshot page and this could lead to a bugcheck.

This problem has been corrected in Oracle Rdb7 Release 7.0.5. The snapshot page
pointer in the row cache is not updated until the snapshot page has been written
back to disk.

2.1.6 Random Corrupt Pages on Fast Processors
Bug 1142549

In rare circumstances, spurious checksum errors were being reported by Oracle
Rdb. An obscure timing issue was found involving the Rdb Global Buffer feature
when multiple processes attempted to access the same database pages at the
same time. This error was more prevalent with the faster processors. In Oracle
Rdb7 Release 7.0.3.1 and above, when this error occurs, an automatic re-read of
the page obtains the correct data, and processing continues.

This problem has been corrected in Oracle Rdb7 Release 7.0.5.

Software Errors Fixed in Oracle Rdb7 Release 7.0.5 2–3

2.1.7 Wrong Results from 3-Way Join Using Cross/Zigzag_Match
Bug 1041071

Wrong results were being returned from a 3-way join using the cross/zigzag match
strategy.

select t1.join_id,
t2.ctrct_rvs_seq_no,
t3.ctrct_expr_dte

from t1, t2, t3
where t1.id = ’V380025A’ and

t1.col2 = ’01’ and
t1.col3 = ’Y’ and
t1.join_id = t2.join_id and
t1.id = t2.id and
t1.join_id = t3.join_id;

where the following indexes are defined :

create index t1_ndx on t1 (j_id, t1_col2, t2_col3, join_id)
create index t2_ndx on t2 (j_id, join_id, t2_col3)
create index t3_ndx on t3 (join_id)

The key parts of this query which contributed to the situation leading to the error
are these:

1. t1, t2, and t3 are joined by one common segment, join_id

2. join_id is the leading segment in t3_ndx, 2nd segment in t2_ndx, and the 4th
segment in t1_ndx

3. t1 and t2 are joined by j_id and join_id columns, which are leading contiguous
segments in t2_ndx, but separated by 2 segments in t1_ndx

4. 2nd and 3rd segment of t1_ndx are used as equality predicates with constant
values

The workaround is to define the logical RDMS$SET_FLAGS, or use the SQL SET
FLAGS statement with the value NOZIGZAG_MATCH or define the logical name
RDMS$DISABLE_ZIGZAG_MATCH as "2".

This problem has been corrected in Oracle Rdb7 Release 7.0.5.

2.1.8 Query Slowdown Caused by Subquery With MIN/MAX Functions
Bug 907429

A query that used to take 40 seconds to run under Rdb 6.1 and Rdb 7.0.1.1 now
takes 4 hours to run under 7.0.1.2 through 7.0.2.1.

The following query is the example of the problem query, where the subqueries
have aggregate functions MIN and MAX.

select distinct(f1.number), f1.name, f1.address, f1.dbkey from foo f1
where (select min(f2.name) from foo f2

where f1.number = f2.number) <>
(select max(f3.name) from foo f3

where f1.number = f3.number)
order by f1.number;

There is no good workaround for this problem.

This problem has been corrected in Oracle Rdb7 Release 7.0.5.

2–4 Software Errors Fixed in Oracle Rdb7 Release 7.0.5

2.1.9 GROUP BY/HAVING Query From a View With LIMIT TO Clause Returns
Wrong Results

Bug 1204964

The following GROUP BY/HAVING query from a view with LIMIT TO clause
returns wrong results.

SELECT seanic_month, COUNT(*) FROM A_2_view
GROUP BY seanic_month HAVING seanic_month = ’1999 03’;

Aggregate Conjunct Firstn Conjunct Get
Retrieval sequentially of relation TABLE_2

SEANIC_MONTH
1999 03 12

1 row selected

where A_2_view is defined as:

create view A_2_VIEW
(SEANIC_MONTH) as
select

C1.SEANIC_MONTH
from table_2 C1
where ((C1.SOURCE_TABLE_TYPE = ’MY’)

and (C1.MONTH_END_FLAG = ’Y’))
order by C1.SEANIC_MONTH desc
limit to 36 rows;

The key parts of this query which contributed to the situation leading to the error
are these:

1. The main select query has GROUP BY/HAVING clause

2. The view is defined as a select query with LIMIT TO clause

The workaround is to remove the LIMIT TO clause from the view query.

This problem has been corrected in Oracle Rdb7 Release 7.0.5.

2.1.10 Query Returns Wrong Results When the Sequence of Same Context
Predicates is Broken Up

Bug 1222168

The following query returns wrong results (should be 0 rows):

Software Errors Fixed in Oracle Rdb7 Release 7.0.5 2–5

select h.blue
from honda h where

h.yellow = (select t.yellow from toyota t limit to 1 row) and
h.purple = ’some-color’ and
not exists (select * from animal a inner join mammal m

using (donkey, horse, pony)
where

m.color = h.color) and
h.blue <> 0;

Cross block of 3 entries
Cross block entry 1

Aggregate Firstn Index only retrieval of relation toyota
Index name toyota_IDX1 [0:0]

Cross block entry 2
Leaf#01 FFirst honda Card=439

BgrNdx1 honda_IDX1 [0:0] Bool Fan=13
Cross block entry 3

Conjunct Aggregate-F1 Conjunct
Match

Outer loop
Sort Conjunct Conjunct
Index only retrieval of relation animal

Index name animal_IDX5 [0:0]
Inner loop (zig-zag)

Conjunct Index only retrieval of relation mammal
Index name mammal_IDX1 [0:0]

The key parts of this query which contributed to the situation leading to the error
are these:

1. Two or more predicates on the same table, for example, T1

2. Followed by NOT EXISTS predicate on different tables, for example, T2 and
T3

3. Followed by another predicate on T1

The workaround is to define the logical RDMS$SET_FLAGS, or use the SQL SET
FLAGS statement with the value MAX_STABILITY or define the logical name
RDMS$MAX_STABILITY, or group all the predicates on T1 together instead of
having them separated by another predicate of a different context.

This problem has been corrected in Oracle Rdb7 Release 7.0.5.

2.1.11 Wrong Results When GROUP BY Columns are NOT Leading Subset of
UNION Columns

Bug 1177495

The following GROUP BY query returns wrong results when GROUP BY columns
are NOT leading subset of UNION columns:

2–6 Software Errors Fixed in Oracle Rdb7 Release 7.0.5

SELECT COURSE_NO, CLASS_NO, COUNT(*)
FROM

(SELECT Q.STDT_ID, Q.COURSE_NO, Q.CLASS_NO
FROM

(SELECT STDT_ID,
REQ_COURSE_NO AS COURSE_NO,
REQ_CLASS_NO_1 AS CLASS_NO

FROM NH_TEMP A
UNION
SELECT STDT_ID,

REQ_COURSE_NO AS COURSE_NO,
REQ_CLASS_NO_2 AS CLASS_NO

FROM NH_TEMP A
) AS Q, IN_TEMP B, PROG_TAB C

WHERE
B.STDT_ID = Q.STDT_ID AND
C.PROG_ID = B.PROG_ID AND
C.OPT_ID = B.OPT_ID) AS X

GROUP BY COURSE_NO, CLASS_NO;

The key parts of this query which contributed to the situation leading to the error
are these:

1. Select query with GROUP BY clause from a subquery with UNION legs

2. GROUP BY column order starts from the 2nd column of UNION column order

The workaround is to use UNION ALL instead of UNION.

This problem has been corrected in Oracle Rdb7 Release 7.0.5.

2.1.12 New Index Scan Algorithm Not Effective With Some Sorted Indices
Bug 1164982

In prior versions of Oracle Rdb7 (since release V7.0.1.3), the logical name
RDMS$INDEX_PART_CHECK could be defined to "1" to enable a new end-
of-partition checking algorithm. This new algorithm can greatly improve
concurrency and performance when scanning partitioned sorted indices. The
new algorithm avoids reading neighbor partitions to determine the end condition
of the scan and therefore allows concurrent table processing by partitioned
applications (see the PARTITION clause of the SET TRANSACTION ...
RESERVING statement in the SQL Reference Manual).

However, the new algorithm was not being used when the partition USING clause
listed a subset of the columns of the index. An example of such an index is shown
here:

create unique index PERSONS_IDX
on PERSONS (

LAST_NAME,
FIRST_NAME,
MIDDLE_INITIAL
)

type is SORTED
store

using (LAST_NAME)
in EMPIDS_LOW

with limit of (’Dement’)
in EMPIDS_MID

with limit of (’Myotte’)
otherwise in EMPIDS_OVER;

In this example, the USING clause uses only one of the columns of the index.

Software Errors Fixed in Oracle Rdb7 Release 7.0.5 2–7

This problem has been corrected in Oracle Rdb7 Release 7.0.5. This release of
Oracle Rdb7 now adapts correctly to this type of index definition.

Note

This new algorithm is the default behaviour in the next major release of
Oracle Rdb. In that release the RDMS$INDEX_PART_CHECK algorithm
is only used to disable the algorithm.

2.1.13 Wrong Results From a View Query With Left Outer Join and
SUBSTRING Function

Bug 1247379

The following select query from a view with left outer join and the SUBSTRING
function should return 1 row:

select * from V1 where VCOL2 = ’abc’;

where V1 is defined as :
create view V1 (VCOL1, VCOL2, VCOL3) as
select A1.COL1,

substring(A1.COL2 from 1 for 3),
A2.COL1

from
(select COL1,COL2 from TAB1) as A1
left outer join
TAB2 as A2

on A2.COL1 = A1.COL1 ;
0 rows selected

The key parts of this query which contributed to the situation leading to the error
are these:

1. A view query joining 2 tables with left outer join

2. One of the view columns is a SUBSTRING function

3. The outer join table is empty

4. The selection predicate uses the column with the SUBSTRING function

The workaround is to redefine the view as a derived table, as in the following
example.

select * from
(select A1.COL1,

substring(A1.COL2 from 1 for 3),
A2.COL1

from
(select COL1,COL2 from TAB1) as A1
left outer join
TAB2 as A2
on A2.COL1 = A1.COL1)
as V1 (VCOL1, VCOL2, VCOL3)

where VCOL2 = ’abc’;

This problem has been corrected in Oracle Rdb7 Release 7.0.5.

2–8 Software Errors Fixed in Oracle Rdb7 Release 7.0.5

2.1.14 Query With EXISTS and SUBSTRING Bugchecks
Bug 1162094

The following query with EXISTS and SUBSTRING bugchecks:

attach ’file personnel’;

create index EMP_STATUS_CODE
on EMPLOYEES(STATUS_CODE);

sel * from employees e
where exists

(select * from candidates c
where e.STATUS_CODE = substring (c.CANDIDATE_STATUS from 1 for 1)

);

The key parts of this query which contributed to the situation leading to the error
are these:

1. Select query from a table with "exists" clause where the tables are joined
using the equality predicate

2. The 1st table column has an index defined and the 2nd table column has no
index

3. The 2nd table column has a substring function

4. The optimizer uses MATCH strategy instead of CROSS

The workaround is to define the logical RDMS$SET_FLAGS, or use the SQL SET
FLAGS statement with the value NOZIGZAG_OUTER (or NOZIGZAG_MATCH).

This problem has been corrected in Oracle Rdb7 Release 7.0.5.

2.1.15 Memory Leak for Trigger Actions
Bug 1229610

In prior releases of Oracle Rdb, a small memory leak (that is allocated memory
that is not released until image rundown) occurred when using domain CHECK
constraints and INSERT/UPDATE statements in trigger actions.

This problem would only be noticed if the application attached to and
disconnected from Rdb databases frequently or the process ran a server process
that attached and disconnected often.

For the problem to occur the following must be true:

• An INSERT, DELETE, or UPDATE statement must cause a trigger to be
activated

• The trigger must include an INSERT or an UPDATE on a table

• The table columns affected by these statements must be based on a domain
with either an explicit domain CHECK constraint defined (possibly inherited
from an Oracle CDD/Repository VALID IF definition), or an implicit precision
check created for DECIMAL and NUMERIC data types when the dialect is
SQL92 or ORACLE LEVEL1.

Note

This problem does not occur for column and table CHECK constraints.
That is, CHECK constraints defined using the CREATE/ALTER TABLE
statement.

Software Errors Fixed in Oracle Rdb7 Release 7.0.5 2–9

This problem has been corrected in Oracle Rdb7 Release 7.0.5.

2.2 SQL Errors Fixed
2.2.1 Incorrect Output in SHOW STORAGE AREA (USAGE) Display

In prior versions of Oracle Rdb, the SHOW STORAGE AREA (USAGE) output
did not include tables which had storage maps without STORE clauses. This
meant that tables which were implicitly mapped to the default storage area were
not displayed.

Additionally, global and local temporary tables, which are maintained in virtual
memory and therefore not mapped to any storage area, were incorrectly listed as
being mapped to the default storage area.

The following example shows these problems. In this example, the temporary
table GLOBAL_TEMP_0 is listed incorrectly, and the base table BASE_TABLE_1,
which should be displayed, is not.

SQL> create global temporary table GLOBAL_TEMP_0 (a integer)
cont> on commit preserve rows;
SQL>
SQL> create table BASE_TABLE_1 (a integer);
SQL> create storage map BASE_TABLE_1_MAP for BASE_TABLE_1
cont> disable compression;
SQL>
SQL> show storage area (usage) *
Storage Areas in database with filename USAGE

Database objects using Storage Area RDB$SYSTEM:
Usage Object Name Map / Partition
---------------- ------------------------------- -------------------------------
Default List Area
Default Area
Table GLOBAL_TEMP_0 (no map)
SQL>

These problems have been corrected in Oracle Rdb7 Release 7.0.5. The SHOW
STORAGE AREA (USAGE) display no longer includes temporary tables and now
includes all implicitly mapped tables. The notation "(no store)" in the output
indicates that the storage map implicitly maps the table to the default storage
area.

The following examples show the revised output for the same database:

SQL> show storage area (usage) *
Storage Areas in database with filename USAGE

Database objects using Storage Area RDB$SYSTEM:
Usage Object Name Map / Partition
---------------- ------------------------------- -------------------------------
Default List Area
Default Area
Storage Map BASE_TABLE_1 BASE_TABLE_1_MAP (no store)
SQL>

2.3 Oracle RMU Errors Fixed

2–10 Software Errors Fixed in Oracle Rdb7 Release 7.0.5

2.3.1 RMU/BACKUP/AFTER/EDIT_FILE Keyword "YEAR" is Producing a Value
of 1999

Bug 1135825

When using edit strings for the AIJ backup filename, and trying to get the year
in the filename, the year is producing a value of "1999", but the year is "2000".

This problem only occurs on January 1, 2000. The year is correctly produced for
December 31, 1999 as well as January 2, 2000 and all future dates.

The following example shows how to reproduce this problem, when the system
date is set to January 1, 2000:

1. Create an MF_PERSONNEL database
2. Issue the following commands:

$ rmu/set after_journal/enable/reserve=5 -
/backup=automatic -
/add=(name=aij1, file=task$dka0:[sqluser70.dg.aij.aij_1]aij1, -

backup_file=task$dka0:[sqluser70.dg.aij.aij_1]aij1_bck, -
edit_filename=(YEAR,MONTH,DAY_OF_MONTH,"-",SEQUENCE)) -

/add=(name=aij2,file=disk$user:[dir]aij2, -
backup_file=disk$user:[dir]aij2_bck, -
edit_filename=(YEAR,MONTH,DAY_OF_MONTH,"-",SEQUENCE)) -

/add=(name=aij3,file=disk$user:[dir]aij3, -
backup_file=disk$user:[dir]aij3_bck, -
edit_filename=(YEAR,MONTH,DAY_OF_MONTH,"-",SEQUENCE)) -

/add=(name=aij4,file=disk$user:[dir]aij4, -
backup_file=disk$user:[dir]aij4_bck, -
edit_filename=(YEAR,MONTH,DAY_OF_MONTH,"-",SEQUENCE)) -

mf_personnel

3. Create a table called A:

SQL> CREATE TABLE A (COLA char(3), COLB char(8));

4. Force an AIJ journal switch-over

$ RMU/SET AFTER/SWITCH MF_PERSONNEL

5. Then check the AIJ backup filename for AIJ_1 once it has filled up:

TASK> dir disk$user:[dir]*.aij

Directory disk$user:[dir]

AIJ1_BCK19990101-0.AIJ;1

Total of 1 file.

There is no workaround to this problem.

This problem has been corrected in Oracle Rdb7 Release 7.0.5.

2.3.2 RMU/SHOW STATS "Average Per Transaction" is Relative to Epoch
The RMU Show Statistic utility displays the ‘‘Average Per Transaction’’
information relative to the statistics epoch, which is when the database was
originally opened for statistics collection. However, it is often desireable to
display information based on recent statistics collection. This is not currently
possible.

The only workaround is to close and re-open the database, which is not
recommended.

Software Errors Fixed in Oracle Rdb7 Release 7.0.5 2–11

This problem has been corrected in Oracle Rdb7 Release 7.0.5. The RMU Show
Statistic utility has been enhanced to allow the ‘‘Average Per Transaction’’
information to be displayed based on the last 30 statistics collections. This is
known as a running average. It should be noted that the running average is
computed using non-zero values (just as the normal average is computed). This
means that the running average reflects the average of the most recent 30 periods
of activity.

The running average display can be selected using the Tools menu, obtained
using the ‘‘!’’ keystroke. Selecting the ‘‘Display running rate-per-sec avg’’ option
will display the running average information. Selecting the ‘‘Display overall
rate-per-sec avg’’ will return the display to normal. The running average display
is also available during the replay of a binary input file. The screen headings will
display the selected option appropriately.

2.4 Hot Standby Errors Fixed
2.4.1 Hot Standby Performance Impact on Master Database is Substantial

The Hot Standby product performance impact on the master database, and
the application processing on the master database, is significantly noticeable.
When measuring AIJ throughput (‘‘AIJ blocks written’’), the impact of using
Oracle Rdb7 Release 7.0.3.1 Hot Standby with the ‘‘Cold’’ synchronization mode
is approximately 35% of that when Hot Standby is not active, and the ‘‘Commit’’
synchronization mode is approximately 65% degradation.

This problem has been corrected in Oracle Rdb7 Release 7.0.5. Substantial
performance analysis has been performed, both in controlled laboratory
environments and real-world customer environments. The goal of this analysis
was to identify bottlenecks and configurations that impact application processing
when Hot Standby is active. As a result of this analysis, several Hot Standby
algorithms, as well as general database algorithms, have been enhanced.

These enhancements result in substantial Hot Standby performance
improvements. When measuring AIJ throughput (‘‘AIJ blocks written’’), the
impact of using Oracle Rdb7 Release 7.0.5 Hot Standby with the ‘‘Cold’’
synchronization mode is approximately 5% of that when Hot Standby is
not active, and the ‘‘Commit’’ synchronization mode is approximately 30%
degradation.

Note that, with Oracle Rdb7 Release 7.0.5, the Hot Standby ‘‘Commit’’
synchronization mode performs better than the Oracle Rdb7 Release 7.0.3.1
‘‘Cold’’ synchronization mode (30% versus 35%).

2–12 Software Errors Fixed in Oracle Rdb7 Release 7.0.5

3
Software Errors Fixed in Oracle Rdb7 Release

7.0.4

This chapter describes software errors that are fixed by Oracle Rdb7 Release
7.0.4.

3.1 Software Errors Fixed That Apply to All Interfaces
3.1.1 RMU/LOAD into Temporary Table

Previously, RMU would not allow loading into a temporary table. While in many
cases loading into a temporary table would have little value, using triggers on a
temporary table may make this an attractive capability.

This restriction has been lifted in Oracle Rdb Release 7.0.4. Oracle Rdb
RMU/LOAD will now load data into temporary tables. Note that the contents
of the temporary table are available only to the RMU/LOAD process and will
disappear when the RMU/LOAD operation completes.

3.1.2 Divide by Zero Error in Query on Large Table
Bug 800006

A simple query on a large table resulted in the following error.

%RDB-E-ARITH_EXCEPT, truncation of a numeric value at runtime
-SYSTEM-F-FLTDIV_F, arithmetic fault, floating divide by zero at
PC=00375C39, PSL=03C00000

The following is an example of the conditions needed to cause the error and the
simple query used to evoke the error.

create table MIS_RTLSAL (RETL_CODE char(4), RETL_CREDITS integer);

create unique index MIS_RTLSAL_00 on MIS_RTLSAL (RETL_CODE);

commit;

select * from mis_rtlsal limit to 1 row;

For the case in which this problem was reported, the cardinality of the table was
161733114 rows and the row cluster factor for the table was 0.2081383. The large
table cardinality was one of the key contributing factors. The error occurred in
the Rdb Optimizer logic as it was trying to compute the cost of retrieving rows
from the database.

As a workaround, this problem can be avoided by using the old cost model for
the Rdb Optimizer. You can enable use of the old cost model, for example in
interactive SQL, by entering the statement SET FLAGS ’OLD_COST_MODEL’; .

This problem has been corrected in Oracle Rdb7 Release 7.0.4.

Software Errors Fixed in Oracle Rdb7 Release 7.0.4 3–1

3.1.3 Wrong Results With COUNT DISTINCT CASE
Bug 763963

The following query has two grouped aggregate value columns (indicated by the
COUNT operation and the GROUP BY clause), a project operation (DISTINCT),
and a CASE clause. These are the key factors contributing to the problem.

select ndate, node,
count(distinct(case device when ’NETWORK’ then process_id else null end))

as NET_DEV_COUNT,
count(distinct(case device when ’’ then process_id else null end))

as NUL_DEV_COUNT
from rdb_usage group by ndate, node, product
order by ndate desc;

With two or more such grouped aggregate columns, the query would return wrong
results for all but one of the aggregate columns. With only one grouped aggregate
column in the query, the results returned were correct.

There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb7 Release 7.0.4.

3.1.4 Bugcheck at RDMS$$RDMSCHEMA_UNLOAD_META+40 on Drop Area
With Cascade

Bug 1022562

A problem with the way memory was allocated during the removal of a storage
area caused local memory to be incorrectly overwritten which resulted in an
access violation at RDMS$$RDMSCHEMA_UNLOAD_META+40.

This problem was mainly seen when at least one table spanned two or more
storage areas including the storage area being dropped.

The following is an example of the storage map and alter database statement
which may show this problem. In the example, a storage map is created for a
table for storage across two storage areas.

SQL> create storage map tab1_map for tab1
cont> store using (col1)
cont> in data_1 with limit of (1000)
cont> in data_2 with limit of (2000)
cont> ;

If, sometime later, the database is altered to drop one of these storage areas, an
access violation may occur.

SQL> alter database file testdb
cont> drop storage area data_1
cont> cascade;
%RDMS-I-BUGCHKDMP, generating bugcheck dump file RDSBUGCHK.DMP
%SQL-I-BUGCHKDMP, generating bugcheck dump file SQLBUGCHK.DMP
%SYSTEM-F-ACCVIO, access violation, reason mask=01, virtual
address=EF9A4AC2 ...

A possible workaround for this problem is to alter the appropriate storage maps
to exclude the storage area you wish to drop prior to altering the database. See
the example below.

3–2 Software Errors Fixed in Oracle Rdb7 Release 7.0.4

SQL> alter storage map tab1_map
cont> store using (col1)
cont> in data_2 with limit of (2000) reorganize;
SQL> alter database file testdb
cont> drop storage area data_1
cont> cascade;

This problem has been corrected in Oracle Rdb7 Release 7.0.4.

3.1.5 Unexpected I/O During DROP and TRUNCATE TABLE
Bug 989292

If a table contained one or more columns of LIST OF BYTE VARYING type,
then the DROP TABLE and TRUNCATE TABLE statements would execute the
equivalent of the DELETE FROM table DML statement to erase the list data
from the database.

Unfortunately this meant that these statements updated the indices of the table
and therefore performed unnecessary I/O to the database and journal files. In
addition to this problem, TRUNCATE TABLE erroneously executed BEFORE and
AFTER TRIGGER actions and some integrity constraints.

This problem has been corrected in Oracle Rdb7 Release 7.0.4. Oracle Rdb now
uses a different mechanism to erase the list data which no longer causes updates
to the indices, or constraint and trigger execution. The result is a significant
reduction in I/O for tables containing list data. There is no change in behavior for
tables that do not contain LIST OF BYTE VARYING columns.

Oracle recommends that SET TRANSACTION ... RESERVING be used to lock
the table for EXCLUSIVE WRITE mode to reduce I/O, CPU and virtual memory
usage during these operations. If possible, attaching to the database using the
RESTRICTED ACCESS clause will further reduce I/O to the snapshot file (SNP)
for the LIST STORAGE AREA. Testing of the revised algorithm for DROP TABLE
showed a reduction of 10% in asynchronous reads, 82% in synchronous reads,
47% in asynchronous writes and 90% in synchronous writes when comparing the
operations.

The first script uses the default reserving mode of SHARED WRITE. This will
force all changes to the table to be logged to the snapshot file, and require the
Rdb Server to perform row locking (or at least maintain data structures to
support row locking).

SQL> attach ’file TEST’;
SQL> set transaction read write;
SQL> drop table EMPLOYEES cascade;
SQL> commit;

The second script uses EXCLUSIVE WRITE to avoid the snapshot I/O for the
EMPLOYEES row changes, and RESTRICTED ACCESS to eliminate snapshot
I/O for the LIST storage area.

SQL> attach ’file TEST restricted access ’;
SQL> set transaction read write reserving EMPLOYEES for exclusive write
SQL> drop table EMPLOYEES cascade;
SQL> commit;

The reduced I/O, CPU usage and virtual memory requirements contributed to a
significant reduction in elapsed time for both DROP TABLE and TRUNCATE
TABLE when the table contained LIST OF BYTE VARYING columns.
Improvements on specific databases will depend on database design, quantity

Software Errors Fixed in Oracle Rdb7 Release 7.0.4 3–3

of data, and over all system resources and therefore may vary from those
reported from the Oracle Rdb test environment.

3.1.6 Incorrect Rounding of Negative Numbers in the Round Function
The Round function in SQL$FUNCTIONS.EXE or SQL$FUNCTIONSnn.EXE
incorrectly rounds negative numbers. This problem has been fixed.

For example, round of (-1.56, 0) would round to -1.0 Not -2.0.

This problem has been corrected in Oracle Rdb7 Release 7.0.4.

3.1.7 Ignored Join Order Led to Poor Query Performance
The following query executed in 1 second with Oracle Rdb7 Release 7.0.1.4.
In some later version (tested using Oracle Rdb7 Release 7.0.3.1), the query
completed after 9 minutes. Here is the query.

select ZM.TEISEI_KGO, PM.PM_ST, PM.OK_ST
from

PM, PM_ZUMEN PZ, ZUMEN ZM
where

PM.HINBAN = ’009627401’ and
PZ.HINBAN = PM.HINBAN and
ZM.ZUMEN_NO = PZ.ZUMEN_NO and
ZM.VER = PZ.VER and
ZM.TEISEI_KGO = (select max(TEISEI_KGO) from ZUMEN ZM2

where ZM2.ZUMEN_NO = ZM.ZUMEN_NO and
ZM2.VER = ZM.VER);

Using interactive SQL, for example, one could compare the Optimizer query
strategy and cost estimates by entering the SET FLAGS ’STRATEGY,ESTIMATE’
statement before executing the query. The cost estimate for the V7.0.1.4 query
strategy was less than that of the V7.0.3.1 chosen strategy. The good strategy
joined the tables in the following order.

PZ.PM_ZUMEN - ZM.ZUMEN - ZM2.ZUMEN - PM.PM

The poor strategy joined the tables in the following order.

ZM.ZUMEN - ZM2.ZUMEN - PZ.PM_ZUMEN - PM.PM

The Optimizer under Oracle Rdb7 Release 7.0.3.1 was ignoring the good join
order. That is, the optimizer did not consider the good join order as providing a
possible solution for the query strategy.

As a workaround, you can force Rdb to use the good query solution by creating a
query outline under Oracle Rdb7 Release 7.0.1.4 or earlier and then applying that
outline to Oracle Rdb7 Release 7.0.3.1.

This problem has been corrected in Oracle Rdb7 Release 7.0.4.

3.1.8 GROUP BY Query on a Distinct Subquery Returns Wrong Results
Bug 1089991

The following query, using match strategy, returns the wrong results.

3–4 Software Errors Fixed in Oracle Rdb7 Release 7.0.4

select n1, n5, count(*)
from

(select distinct C1.N1, C1.N2, C1.N3, C2.N5
from T1 C1, T2 C2
where (C1.N3 = C2.N4))
as v1 (n1, n2, n3, n5)

group by n1,n5;
Aggregate
Merge of 1 entries

Merge block entry 1
Reduce Sort Conjunct
Match

Outer loop
Sort Get Retrieval sequentially of relation T2

Inner loop
Temporary relation Sort Get
Retrieval sequentially of relation T1

N1 N5
val2 val5 1
val3 val5 1
val1 val5 1
val4 val5 1
val1 val5 1
val2 val5 1

6 rows selected

Where t1 and t2 are defined as follows:

create table T1 (
N1 CHAR (12),
N2 INTEGER,
N3 CHAR (4));

create table T2 (
N4 CHAR (4),
N5 CHAR (12));

commit work;

insert into T1 value (’val2’, 1001, ’5124’);
insert into T1 value (’val3’, 1002, ’5124’);
insert into T1 value (’val1’, 1003, ’5159’);
insert into T1 value (’val2’, 1004, ’5159’);
insert into T1 value (’val1’, 1005, ’5163’);
insert into T1 value (’val2’, 1006, ’5163’);
insert into T1 value (’val1’, 1007, ’5152’);
insert into T1 value (’val2’, 1008, ’5152’);
insert into T1 value (’val1’, 1009, ’5144’);
insert into T1 value (’val4’, 1009, ’5144’);

insert into T2 value (’5124’, ’val5’);
insert into T2 value (’5163’, ’val5’);
insert into T2 value (’5144’, ’val5’);

This problem is introduced by the redundant sort elimination enhancement made
in an earlier release of Oracle Rdb7. The Optimizer eliminates the GROUP BY
sort as redundant as follows.

By combining the GROUP BY sort (C1.N1, C2.N5) and
DISTINCT sort (C1.N1, C1.N2, C1.N3, C2.N5) into

(C1.N1, C2.N5, C1.N2, C1.N3)

Later the match strategy, using the join column (C1.N3 = C2.N4),
changes into (C1.N3, C2.N5, C1.N2, C1.N1) and thus produces the wrong
order for the GROUP BY operation.

The fix restores the GROUP BY sort to produce the correct result.

Software Errors Fixed in Oracle Rdb7 Release 7.0.4 3–5

There is no workaround for this problem.

This problem has been corrected in Oracle Rdb7 Release 7.0.4.

3.1.9 After Image Journal File Format Change
With the new support for the LogMiner(tm) for Oracle Rdb feature, the After
Image Journal (AIJ) internal file format minor version number has been updated
for Release 7.0.4. If you enable the LogMiner for Oracle Rdb, After Image Journal
files created by this version of Oracle Rdb7 may not be accepted by prior versions
of Oracle Rdb7.

For this reason, you should make certain to verify and then backup your
database(s) and AIJ file(s) before upgrading to Oracle Rdb7 Release 7.0.4.

3.1.10 ORDER BY Ignored in Query With a Sub-select Statement
Bug 1073357

The following query, having an explicit ORDER BY clause, would return rows in
the wrong order.

select u.user_id, u.user_full_name,
(select group_id from user_group_usgr gr

where gr.user_id = u.user_id and gr.user_id = ’LEAM’)
from user_user u
order by u.user_id;

The key parts of this query which contributed to the situation leading to the error
are these:

1. an ORDER BY clause for the outer select statement

2. a sub-select statement with its own WHERE clause

3. a portion of the WHERE clause in the form: column = ’literal-value’ (in this
example: gr.user_id = ’LEAM’)

4. the referenced column (gr.user_id) is the same, though possibly from a
different table, as the one named in the ORDER BY clause (u.user_id).

Given these conditions, past versions of Oracle Rdb would ignore the ORDER BY
clause. Oracle Rdb assumed that the ordering was being done on a single value
(in this case the value ’LEAM’). There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb7 Release 7.0.4.

3.1.11 Query With Sort/Forward Scan Instead of Reverse Scan Slows Down
Bug 901904

The following query slows down drastically in Oracle Rdb7 due to the Sort
/Forward strategy as compared to Oracle Rdb V6.1 where the reverse scan is
applied.

select * from t1 where
c4 >= 500000 and
c1 =’10’ and
c2 =’460’ and
c3 =’01’

order by c4 desc;
Firstn Sort
Leaf#01 BgrOnly T1 Card=9022

BgrNdx1 T1_NDX [1:0] Bool Fan=12

3–6 Software Errors Fixed in Oracle Rdb7 Release 7.0.4

The following is the strategy output in Oracle Rdb V6.1.

Firstn Conjunct Get Retrieval by index of relation T1
Index name T1_NDX [1:0] Bool Reverse Scan

The table and index are defined as follows:

create table T1 (
tsn integer,
c1 char (2),
c2 char (3),
c3 char (2),
c4 integer);

create index T1_NDX on T1 (c4, c1, c2, c3);

commit work;

Oracle Rdb7 uses the new cost model where the index scan cost increases
significantly (in the range of 10 to 20 times compared to old cost model) in order
to reflect the more accurate rate of I/O retrievals.

Reverse scan overhead cost depends on the forward scan index cost since it is
estimated as 10% of that cost, but sort cost is estimated based on the cardinality
of the tables and some startup fixed cost.

Consequently, the query will select sort and forward scan strategy over reverse
scan since sort cost becomes less expensive than reverse scan and thus the sort
suffers performance degradation at run time.

This fix may have a wide impact on other queries where the match with a
combination of sort is chosen over the cross. This fix may now revert the query
back to cross strategy due to the more expensive costing of sort.

The workaround would be to use the old cost model.

This problem has been corrected in Oracle Rdb7 Release 7.0.4.

3.1.12 Query With Selection Predicates Over UNION Legs Returns Wrong
Results

Bug 1030588

The following view query with selection predicates should return 0 rows.

select count(*) from v1
where

trade_date = 36527 and
currency = ’EUR’ ;

Aggregate Reduce Sort
Merge of 2 entries

Merge block entry 1
Conjunct
Match

Outer loop
Sort Get Retrieval sequentially of relation T1 <=== missing conjunct

Inner loop
Get Retrieval by index of relation T2 <=== missing conjunct

Index name T2_IDX [0:0]
Merge block entry 2
Conjunct Get Retrieval sequentially of relation T1

2
1 row selected

Software Errors Fixed in Oracle Rdb7 Release 7.0.4 3–7

Where the view v1 is defined as follows:

create view v1 (trade_date, currency) as
select p.settle_date, c.currency

from T1 c, T2 p
where (c.tradenum = p.tradenum)

union
select trade_date, currency
from T1
;

A fix for bug 548011 was made in Oracle Rdb7 Release 7.0.1.6 to push down the
selection predicates into the union legs but the fix introduced this problem.

The above query should push the predicates "trade_date = 36527" and "currency
= ’EUR’" into the Merge blocks (union legs).

There is no workaround for this problem.

This problem has been corrected in Oracle Rdb7 Release 7.0.4.

3.1.13 Left Outer Join View Query With CASE Statement Returns Wrong
Results

Bug 1033975

The following left outer join view query with CASE statement returns the wrong
result (0 rows).

select buys, trade_date, update_type, portfolio, region
from view1 where
region = ’E’ and
portfolio = ’JOHNE’
and buys > 0;

Reduce Sort Conjunct
Cross block of 2 entries (Left Outer Join)

Cross block entry 1
Conjunct
Cross block of 2 entries (Left Outer Join)

Cross block entry 1
Conjunct Get
Retrieval by index of relation T1

Index name T1_NDX [1:1] Bool
Cross block entry 2

Conjunct <=== this extra conjunct is causing the problem
Merge of 1 entries

Merge block entry 1
Conjunct Index only retrieval of relation T2

Index name T2_NDX [1:1]
Cross block entry 2

Conjunct Conjunct
Index only retrieval of relation T3

Index name T3_NDX [1:1]
0 row selected

Where view1 is defined as follows:

3–8 Software Errors Fixed in Oracle Rdb7 Release 7.0.4

create view view1 (
region,
trade_date,
update_type,
portfolio,
buys) AS

select
c2.region,
c2.trade_date,
c2.update_type,
c2.portfolio,
c2.buys

from view2 as c2
left outer join
t3 as c3 on (c2.region = c3.region)

group by
c2.region,
c2.trade_date,
c2.update_type,
c2.portfolio,
c2.buys ;

and view2 is defined as follows:

create view view2 (
region,
trade_date,
update_type,
portfolio,
buys) as

select
c1.region,
c1.trade_date,
c1.update_type,
c1.portfolio,
case

when (c1.recommendation > c1.held_when_recommended)
then c1.recommendation
else 0

end
from t1 as c1

left outer join
(select c5.region, c5.trade_date

from t2 c5) as c4 (f1, f2)
on (c1.region = c4.f1) ;

In a previous release of Oracle Rdb7, a fix for bug 767931 was included where
the extra conjunct was generated for a left outer join query. This is usually not a
problem except when a CASE statement is used in the 2nd view to further qualify
the column of the selection predicates as shown above.

In the example, the conjunct of "buys" selection predicate requires the table T1
and correctly generates it in the 1st leg of the left outer join query but then it
incorrectly generates it again in the 2nd cross leg where only the T2 table is
available.

There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb7 Release 7.0.4.

Software Errors Fixed in Oracle Rdb7 Release 7.0.4 3–9

3.1.14 Query Slower Using Cross Strategy and Outline Fails to Restore to
Match

Bugs 1066620 and 1066599

The following query once used a match strategy and performed well. After Oracle
Rdb7 Release 7.0.1.4, the strategy changed to a cross and the query ran much
slower. A query outline also failed to force the use of a match over cross strategy.

select s.subject_code, s.date_audit, s.audit_username
from subjects_d_audit s
where s.date_audit =

(select max(s1.date_audit) from subjects_d_audit s1
where s1.subject_code = s.subject_code

)
and exists

(select s2.subject_code from subjects s2
where s2.subject_code = s.subject_code

)
;

~S: Outline "QO_A115A0E044FFD4BF_00000000" used
~S: Full compliance with the outline was not possible
%RDMS-F-OUTLINE_FAILED, could not comply with mandatory query outline directives

Here is the modified outline.

create outline QO_A115A0E044FFD4BF_00000000
id ’A115A0E044FFD4BF3957A95575671E8C’
mode 0
as (

query (
-- For loop

subquery (
SUBJECTS_D_AUDIT 0 access path sequential

! join by cross to
join by match to

subquery (
SUBJECTS_D_AUDIT 1 access path sequential
)
join by cross to

subquery (
SUBJECTS 2 access path index SUBJECTS_PKEY
)

)
)

)
compliance mandatory ;

The key parts of this query which contributed to the situation leading to the error
are these:

1. the main select query with 2 or more subquery’s in the where clause

2. each subquery is joined to the common column of the main context

Oracle Rdb7 Release 7.0.1.5 introduced a problem when a fix was made for
Problem Report 771079.

There is no known workaround for this problem.

This problem has been corrected in Oracle Rdb7 Release 7.0.4.

3–10 Software Errors Fixed in Oracle Rdb7 Release 7.0.4

3.2 SQL Errors Fixed
3.2.1 Unexpected UNSDATASS Error Reported by SQL Precompiler and

Module Language
Bugs 951824 and 1033571

The DATE VMS data type included from the Oracle CDD/Repository was not
correctly handled by the CAST function within the SQL precompiler and module
language compilers. This resulted in the following error.

$ sql$pre/cobol/copy_dict /list/copy_list test.sco
WHERE COL2 = CAST(:F_DATE_VMS AS DATE ANSI)

1
%SQL-F-UNSDATASS, (1) Unsupported date/time assignment from
F_DATE_VMS to <cast type>

This problem has been corrected in Oracle Rdb7 Release 7.0.4.

3.2.2 SQL IMPORT No Longer Evaluates Table and Column Constraints
In prior versions of Oracle Rdb, the SQL IMPORT statement would validate each
constraint as it was applied to the recreated tables in the database. This could
be a time consuming step during IMPORT requiring multiple scans of the source
table.

This problem has been corrected in Oracle Rdb7 Release 7.0.4. The SQL IMPORT
statement no longer requires that constraints be validated. Eliminating this
step should reduce the time taken to IMPORT a database containing many
constraints. Oracle recommends using RMU/VERIFY/CONSTRAINTS to check
constraints.

Note

Users of the RDO IMPORT command are encouraged to use the SQL
IMPORT to benefit from this change in behavior.

3.2.3 Unexpected INVACC_OUT_PARA Error Generated by CREATE MODULE
In previous versions of Oracle Rdb7, the CALL statement in a stored procedure
or function might cause CREATE MODULE to fail unexpectedly.

The following example shows the error which may be generated by the CREATE
MODULE statement.

Software Errors Fixed in Oracle Rdb7 Release 7.0.4 3–11

SQL> create module SAMPLE_MODULE_P
cont> language SQL
cont>
cont> procedure P1 (out :a integer);
cont> set :a = 0;
cont>
cont> end module;
SQL>
SQL> create module SAMPLE_MODULE_Q
cont> language SQL
cont>
cont> procedure Q1 (out :c integer);
cont> call P1 (:c);
cont>
cont> end module;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDB-E-INVALID_BLR, request BLR is incorrect at offset 58
-RDMS-E-INVACC_OUT_PARA, attempt to read from an OUT parameter

This error is generated when a parameter declared as OUT is passed to a stored
procedure that similarly expects an OUT parameter. Oracle Rdb was incorrectly
requiring IN access to the parameter.

As a workaround, the parameter may be declared as INOUT to avoid this error.

This problem has been corrected in Oracle Rdb7 Release 7.0.4. The Oracle Rdb
Server now correctly checks the parameter mode and no longer requires the
parameter to be declared as INOUT in this case.

3.2.4 Changed Behavior for CAST of Date/Time Values With Seconds Field
Bug 1075663

On most VAX and Alpha AXP hardware, the VMS system time is maintained to
at least 1 millisecond intervals, which is more precise than is currently supported
by Oracle Rdb.

Applications which accept the date/time using system services (SYS$GETTIM,
SYS$BINTIM, etc) and insert those values using SQL must be aware that these
date/time values will be truncated to 100th of a second by formatting routines
such as SYS$ASCTIM, LIB$FORMAT_DATE_TIME and the SQL statements
SELECT, PRINT, etc.

When the displayed results are subsequently used as input to queries it is
possible that no matches will be found because the values do not include the full
fractional seconds precision. The following example shows the potential problem.

SQL> select ts_col from ts_table;
TS_COL
10-DEC-1999 10:27:10.80
10-DEC-1999 10:27:11.21
10-DEC-1999 10:27:11.21
10-DEC-1999 10:27:11.21
10-DEC-1999 10:27:11.21
10-DEC-1999 10:27:11.21
10-DEC-1999 10:27:11.22
10-DEC-1999 10:27:11.22
10-DEC-1999 10:27:11.22

9 rows selected
SQL> select * from ts_table
cont> where ts_col = date vms’10-DEC-1999 10:27:10.80’;
0 rows selected
SQL>

3–12 Software Errors Fixed in Oracle Rdb7 Release 7.0.4

Oracle Rdb currently only supports times and timestamps up to 100ths of a
second precision, e.g. TIMESTAMP(2). Starting with Rdb Version 5.1, all Rdb
Server generated timestamps (CURRENT_TIME and CURRENT_TIMESTAMP)
are automatically truncated to 100ths of a second. Oracle therefore recommends
that these functions be used in preference to the OpenVMS system services to
avoid this problem.

However, if timestamp values must be derived from an external source then
care must be taken to query or store those values with correct truncation of the
fractional seconds precision.

Displaying full precision of seconds
The run-time library routine LIB$FORMAT_DATE_TIME can be used to format
the higher precision seconds fields. This routine is used by interactive SQL for
DATE VMS types. First a date formatting logical names must be defined which
includes the higher precision, as in the following example.

$ DEFINE/EXEC/TABLE=LNM$DT_FORMAT_TABLE -
LIB$TIME_FORMAT_502 "!H02:!M0:!S0.!C7"

Once this logical is defined it can be used by any application which formats using
LIB$FORMAT_DATE_TIME.

SQL> set date format date 1, time 502
SQL> select ts_col from ts_table;

TS_COL
10-DEC-1999 10:27:10.8064904
10-DEC-1999 10:27:11.2175969
10-DEC-1999 10:27:11.2185734
10-DEC-1999 10:27:11.2195499
10-DEC-1999 10:27:11.2195499
10-DEC-1999 10:27:11.2195499
10-DEC-1999 10:27:11.2205264
10-DEC-1999 10:27:11.2205264
10-DEC-1999 10:27:11.2205264

9 rows selected
SQL> select * from ts_table
cont> where ts_col between date vms’10-DEC-1999 10:27:10.80’
cont> and date vms’10-DEC-1999 10:27:10.81’;

TS_COL
10-DEC-1999 10:27:10.8064904

1 row selected
SQL>

Oracle Rdb7 Release 7.0.4 has been enhanced so that the CAST operator now
efficiently truncates these extra fractional seconds precision when you use the
same input and output data types. That is, if you cast a DATE VMS type to
DATE VMS, the fractional seconds precision is enforced. The same is true for
TIME, TIMESTAMP and INTERVAL types which include the SECOND field.

The following example shows the query result after truncation using CAST
function.

Software Errors Fixed in Oracle Rdb7 Release 7.0.4 3–13

SQL> select cast(ts_col as date vms) from ts_table;

10-DEC-1999 10:27:10.8000000
10-DEC-1999 10:27:11.2100000
10-DEC-1999 10:27:11.2100000
10-DEC-1999 10:27:11.2100000
10-DEC-1999 10:27:11.2100000
10-DEC-1999 10:27:11.2100000
10-DEC-1999 10:27:11.2200000
10-DEC-1999 10:27:11.2200000
10-DEC-1999 10:27:11.2200000

9 rows selected
SQL> select * from ts_table
cont> where cast(ts_col as date vms) = date vms’10-DEC-1999 10:27:10.80’;

TS_COL
10-DEC-1999 10:27:10.8064904

1 row selected
SQL>

3.2.5 SQL Rejects Queries Which Use Column Named VALUE
Bug 1149113

In prior versions of Oracle Rdb, using a column named VALUE was prohibited
because of the special nature of this keyword. VALUE is a special identifier
reserved for use in a domain CHECK constraint definition. Attempts to use such
a column caused a fatal error for DML statements (INSERT, SELECT, DELETE
and UPDATE) as shown in this simple example.

SQL> select value from v;
%SQL-F-VALUEILL, VALUE cannot be used outside of a domain constraint

While it is true that VALUE is a reserved word in the ANSI and ISO SQL
Standards, other similar keywords cause an information message to be generated
so that older applications can continue to execute unchanged. However, this
VALUEILL error prevented applications from working with more recent versions
of Oracle Rdb.

With this release of Oracle Rdb, the VALUEILL error is no longer reported and
VALUE is treated in the same way as other reserved words. That is, a warning is
issued by default. The query will fail if a dialect is established such as SQL92.

SQL> select value from v;
%SQL-I-DEPR_FEATURE, Deprecated Feature: Keyword VALUE used as an identifier
0 rows selected
SQL> set dialect ’sql92’;
SQL> select value from v;
%SQL-F-RES_WORD_AS_IDE, Keyword VALUE used as an identifier

This problem has been corrected in Oracle Rdb7 Release 7.0.4.

3.3 Oracle RMU Errors Fixed
3.3.1 RMU Extract Has Enhanced Extract of Conditional Expressions

Oracle Rdb7 Release 7.0.4 improves the extraction of the conditional expressions
COALESCE, NVL, NULLIF, and simple CASE expressions.

In prior releases, these expressions were incorrectly extracted, and may have
appeared as searched CASE expressions. This occurred because the pattern
matching algorithm often didn’t find a match for these expressions. This release
enhances the pattern matching to match correctly these expressions.

The side effect of these changes is that some searched CASE expressions may be
extracted as an alternate and more compact form of the conditional expression.

3–14 Software Errors Fixed in Oracle Rdb7 Release 7.0.4

The following list shows the equivalent expressions matched by RMU Extract.

• NULLIF (a, b) is eqivalent to

CASE
WHEN a = b THEN NULL
ELSE a

END

• NVL (a, ..., b) or COALESCE (a, ..., b) is equivalent to

CASE
WHEN a IS NOT NULL THEN a
...
ELSE b

END

• The simple CASE expression

CASE a
WHEN b THEN v1
WHEN NULL THEN v2
...
ELSE v3

END

is equivalent to

CASE
WHEN a = b THEN v1
WHEN a IS NULL THEN v2
...
ELSE v3

END

RMU Extract tries to decode the internal representation to as compact a SQL
expression as possible.

3.3.2 RMU/REPLICATE AFTER START Command Fails on TCP/IP With Large
Port Numbers

When the TCP/IP service for Hot Standby is defined with a port number larger
than 32,767, the network connection would fail due to incorrect network port to
host port translation of the port number.

$ rmu/replicate after_journal start m_testdb.rdb -
/standby=node::device-directory:s_testdb.rdb

%COSI-F-CONNECFAIL, connect over network timed-out or failed

This problem has been corrected in Oracle Rdb7 Release 7.0.4. With this release,
TCP/IP port numbers up to 65,535 will be supported.

3.3.3 SHOW STATS Cannot Replay /OPTIONS=ROW_CACHE Input File
The RMU Show Statistic utility was unable to replay binary output files created
with the /OPTIONS=ROW_CACHE or /OPTIONS=ALL qualifiers. The problem
only occurs when the database has row caching enabled.

The only work-around is to not use the /OPTIONS=ROW_CACHE qualifier.

This problem has been corrected in Oracle Rdb7 Release 7.0.4. The
/OPTIONS=ROW_CACHE and /OPTIONS=ALL qualifiers now work correctly.

Software Errors Fixed in Oracle Rdb7 Release 7.0.4 3–15

3.3.4 RMU/SHOW LOCKS Difficult to Identify Lock Conflict Culprit
Each line of the RMU/SHOW LOCKS utility output shows the process that is
waiting and the process that is blocking it. At least one of the blocking processes
is not in the list of waiting processes. In other words, the process is either
running a long transaction or, more likely, it’s waiting for a non-database event.
If this process is terminated or forced to finish its transaction, the waiting
processes start to move, and frequently the blocks all clear.

Waiting Blocker
0001 0002
0002 0003
0003 0004 <-- stop/id=0004 may well free things up
0005 0003
0006 0005 <-- stop/id=0005 would only help 0006

Maybe processes 0001-0006 are all culprits, but there is a sense in which process
0004 is more culpable.

There is no workaround to this problem other than manually searching the
RMU/SHOW LOCKS /MODE=WAITING output manually.

This problem has been corrected in Oracle Rdb7 Release 7.0.4. The
RMU/SHOW LOCKS utility has been enhanced to support a new display mode,
/MODE=CULPRIT.

The /MODE=CULPRIT output is a sanitized version of the /MODE=WAITING
output. The /MODE=CULPRIT qualifier displays only the set of locks for
processes that are blocking other processes but are themselves not blocked.
This output represents the processes that are the source of database stalls and
performance degradation.

In the following real-world example, one process is blocking the entire application.
Compare the difference in the output between the /MODE=WAITING and
/MODE=CULPRIT output.

The /MODE=WAITING qualifier displays the following output:

==
SHOW LOCKS/LOCK/MODE=WAITING Information
==

--
Resource: record 109:1085:0

ProcessID Process Name Lock ID System ID Requested Granted
--------- --------------- --------- --------- --------- -------

Blocker: 3C806080 RICK10......... 23002C6A 000100E4 PR NL
Waiting: 3C806081 RICK8.......... 33004A4A 000100E4 PR NL
Waiting: 3C805C86 RICK14......... 470088DA 000100E4 PR NL
Waiting: 3C805E7E RICK4.......... 410002FA 000100E4 PR NL

--
Resource: record 109:1085:0

ProcessID Process Name Lock ID System ID Requested Granted
--------- --------------- --------- --------- --------- -------

Blocker: 3C806081 RICK8.......... 33004A4A 000100E4 PR NL
Waiting: 3C805C86 RICK14......... 470088DA 000100E4 PR NL
Waiting: 3C805E7E RICK4.......... 410002FA 000100E4 PR NL

--
Resource: record 109:1085:0

3–16 Software Errors Fixed in Oracle Rdb7 Release 7.0.4

ProcessID Process Name Lock ID System ID Requested Granted
--------- --------------- --------- --------- --------- -------

Blocker: 3C806083 RICK12......... 0E008171 000100E4 PR PR
Waiting: 3C805E82 RICK9.......... 2A0087FF 000100E4 EX PR
Waiting: 3C805A84 RICK11......... 3B00F074 000100E4 PR NL
Waiting: 3C806085 RICK13......... 3200EF7E 000100E4 PR NL
Waiting: 3C806080 RICK10......... 23002C6A 000100E4 PR NL
Waiting: 3C806081 RICK8.......... 33004A4A 000100E4 PR NL
Waiting: 3C805C86 RICK14......... 470088DA 000100E4 PR NL
Waiting: 3C805E7E RICK4.......... 410002FA 000100E4 PR NL

--
Resource: record 109:1085:0

ProcessID Process Name Lock ID System ID Requested Granted
--------- --------------- --------- --------- --------- -------

Blocker: 3C805E82 RICK9.......... 2A0087FF 000100E4 EX PR
Waiting: 3C805A84 RICK11......... 3B00F074 000100E4 PR NL
Waiting: 3C806085 RICK13......... 3200EF7E 000100E4 PR NL
Waiting: 3C806080 RICK10......... 23002C6A 000100E4 PR NL
Waiting: 3C806081 RICK8.......... 33004A4A 000100E4 PR NL
Waiting: 3C805C86 RICK14......... 470088DA 000100E4 PR NL
Waiting: 3C805E7E RICK4.......... 410002FA 000100E4 PR NL

--
Resource: record 109:1085:0

ProcessID Process Name Lock ID System ID Requested Granted
--------- --------------- --------- --------- --------- -------

Blocker: 3C8004DC RICK5.......... 370088C2 000100E4 PR PR
Waiting: 3C805E82 RICK9.......... 2A0087FF 000100E4 EX PR
Waiting: 3C805A84 RICK11......... 3B00F074 000100E4 PR NL
Waiting: 3C806085 RICK13......... 3200EF7E 000100E4 PR NL
Waiting: 3C806080 RICK10......... 23002C6A 000100E4 PR NL
Waiting: 3C806081 RICK8.......... 33004A4A 000100E4 PR NL
Waiting: 3C805C86 RICK14......... 470088DA 000100E4 PR NL
Waiting: 3C805E7E RICK4.......... 410002FA 000100E4 PR NL

--
Resource: record 109:1085:0

ProcessID Process Name Lock ID System ID Requested Granted
--------- --------------- --------- --------- --------- -------

Blocker: 3C805C86 RICK14......... 470088DA 000100E4 PR NL
Waiting: 3C805E7E RICK4.......... 410002FA 000100E4 PR NL

--
Resource: record 109:1660:1

ProcessID Process Name Lock ID System ID Requested Granted
--------- --------------- --------- --------- --------- -------

Blocker: 3C8004DC RICK5.......... 2D00D032 000100E4 EX EX
Waiting: 3C806083 RICK12......... 5700D6F9 000100E4 EX NL

--
Resource: record 109:1085:0

ProcessID Process Name Lock ID System ID Requested Granted
--------- --------------- --------- --------- --------- -------

Blocker: 3C806085 RICK13......... 3200EF7E 000100E4 PR NL
Waiting: 3C806080 RICK10......... 23002C6A 000100E4 PR NL
Waiting: 3C806081 RICK8.......... 33004A4A 000100E4 PR NL
Waiting: 3C805C86 RICK14......... 470088DA 000100E4 PR NL
Waiting: 3C805E7E RICK4.......... 410002FA 000100E4 PR NL

--
Resource: record 109:1085:0

Software Errors Fixed in Oracle Rdb7 Release 7.0.4 3–17

ProcessID Process Name Lock ID System ID Requested Granted
--------- --------------- --------- --------- --------- -------

Blocker: 3C805A84 RICK11......... 3B00F074 000100E4 PR NL
Waiting: 3C806085 RICK13......... 3200EF7E 000100E4 PR NL
Waiting: 3C806080 RICK10......... 23002C6A 000100E4 PR NL
Waiting: 3C806081 RICK8.......... 33004A4A 000100E4 PR NL
Waiting: 3C805C86 RICK14......... 470088DA 000100E4 PR NL
Waiting: 3C805E7E RICK4.......... 410002FA 000100E4 PR NL

The /MODE=CULPRIT qualifier displays the following output:

==
SHOW LOCKS/LOCK/MODE=CULPRIT Information
==

--
Resource: record 109:1085:0

ProcessID Process Name Lock ID System ID Requested Granted
--------- --------------- --------- --------- --------- -------

Blocker: 3C8004DC RICK5.......... 370088C2 000100E4 PR PR
Waiting: 3C805E82 RICK9.......... 2A0087FF 000100E4 EX PR
Waiting: 3C805A84 RICK11......... 3B00F074 000100E4 PR NL
Waiting: 3C806085 RICK13......... 3200EF7E 000100E4 PR NL
Waiting: 3C806080 RICK10......... 23002C6A 000100E4 PR NL
Waiting: 3C806081 RICK8.......... 33004A4A 000100E4 PR NL
Waiting: 3C805C86 RICK14......... 470088DA 000100E4 PR NL
Waiting: 3C805E7E RICK4.......... 410002FA 000100E4 PR NL

--
Resource: record 109:1660:1

ProcessID Process Name Lock ID System ID Requested Granted
--------- --------------- --------- --------- --------- -------

Blocker: 3C8004DC RICK5.......... 2D00D032 000100E4 EX EX
Waiting: 3C806083 RICK12......... 5700D6F9 000100E4 EX NL

In this example, process 3C8004DC is the culprit of two separate, but probably
related, stalls.

3.3.5 RMU BACKUP to Tape Hung if Bad Checksum
Bug 1059787

When a database page contained an invalid checksum, RMU/BACKUP/ONLINE
to a tape device hung instead of reporting the error if checksum checking was
enabled.

The following example shows a sample RMU BACKUP command line which
caused the hang if there was a bad checksum on a database page.

RMU/BACKUP/ONLINE/LABEL=BACK01 database.rdb TAPE:database.rbf

The following shows the corrected behavior: an error message is ouput and the
backup to tape reports the fatal error and does not hang.

RMU/BACKUP/ONLINE/LABEL=BACK01 database.rdb TAPE:database.rbf
%RMU-F-CANTREADDBS, error reading pages 2:3-3
-RMU-F-CHECKSUM, checksum error - computed 67C3D4E8, page contained 00003039
%RMU-F-FATALERR, fatal error on BACKUP

As a workaround, to avoid the problem do not enable checksum checking for RMU
BACKUP to tape.

RMU/BACKUP/NOCHECKSUM/ONLINE/LABEL=BACK01 database.rdb TAPE:database.rbf

This problem has been corrected in Oracle Rdb7 Release 7.0.4.

3–18 Software Errors Fixed in Oracle Rdb7 Release 7.0.4

3.3.6 RMU BACKUP to Tape Hung on QUIT Response to Wrong Label
Message

RMU BACKUP to tape devices hung when the user chose the "QUIT" response as
the reply to the message output by RMU BACKUP when a label was specified in
the RMU BACKUP command which did not match the label on the tape device
being used for the backup.

The following example shows an RMU BACKUP command line and QUIT
response to the wrong label message output by RMU BACKUP which caused
RMU BACKUP to tape to hang.

RMU/BACKUP/REWIND/LABEL=(badlab01,badlab02)/LOADER MF_PERSONNEL.RDB -
111MUA30:MF_PERSONNEL.RBF/MASTER, 111MUA31:/MASTER
%RMU-I-WRNGLBL, Tape on _111MUA30 was incorrectly labeled. Expected GOODLAB

- Found BADLAB01
%RMU-I-TAPEDISPW, Specify tape disposition for _111MUA30 (QUIT,INITIALIZE,

RETRY,UNLOAD)
quit

The workaround for this problem is to choose an option other than "QUIT" in
response to the bad label message or to reenter the RMU BACKUP command
specifying a label that matches the label on the tape device.

This problem has been corrected in Oracle Rdb7 Release 7.0.4.

3.3.7 RMU/REPAIR/INIT=FREE_PAGES/ABM Did Not Return an Error
Bug 968268

The RMU/REPAIR documented restriction that the qualifiers
/INITIALIZE=FREE_PAGES and /ABM were conflicting qualifiers and could
not be used together on the same RMU/REPAIR command line was not enforced
by a conflicting qualifiers error message but was allowed.

The following example shows that the /INITIALIZE=FREE_PAGES and /ABM
qualifiers were accepted by the RMU/REPAIR command when a conflicting
qualifiers error should have been returned.

$RMU/REPAIR/ABM/SPAM/INITIALIZE=FREE_PAGES/AREA=AREA_NAME MF_PERSONNEL

The following example shows that an error is now returned and the command is
not accepted.

$RMU/REPAIR/ABM/SPAM/INITIALIZE=FREE_PAGES/AREA=AREA_NAME MF_PERSONNEL
%RMU-F-CONFLSWIT, conflicting qualifiers /ABM and /INITIALIZE=FREE_PAGES

As a workaround, do not include the /ABM and /INITIALIZE=FREE_PAGES
qualifiers in the same RMU/REPAIR command line.

This problem has been corrected in Oracle Rdb7 Release 7.0.4.

3.3.8 Incorrect BADIDXREL Messages From Online RMU Verify
Bugs 883349 and 1039089

An online RMU VERIFY of a database index where /TRANSACTION_
TYPE=READ_ONLY was specified sometimes output incorrect RMU-W-
BADIDXREL warning messages when the index was being concurrently modified
by other users. These same BADIDXREL messages were not output if the index
was not being modified during the online verify or if READ_ONLY was not
specified with the /TRANSACTION_TYPE qualifier.

Software Errors Fixed in Oracle Rdb7 Release 7.0.4 3–19

The following example shows the RMU VERIFY command for verifying a
database index using the /TRANSACTION_TYPE=READ_ONLY qualifier and
the resulting RMU-W-BADIDXREL warning message which was not output if
/TRANSACTION_TYPE=READ_ONLY was not specified.

$ rmu/verify/noroot/transaction_type=read_only -
/index=(db_index)/data rdb_database
%RMU-W-BADIDXREL, Index DB_INDEX either points to a non-existent record or

has multiple pointers to a record in table RDB_TABLE.
The logical dbkey in the index is 527:2324:1.

The workaround for this problem is to use the /TRANSACTION_TYPE=READ_
ONLY qualifier when no user transaction is modifying the database index being
verified or to specify another /TRANSACTION_TYPE such as PROTECTED (the
default) or EXCLUSIVE.

$ rmu/verify/noroot/transaction_type=exclusive -
/index=(db_index)/data rdb_database

This problem has been corrected in Oracle Rdb7 Release 7.0.4.

3.3.9 RMU VERIFY Did Not Find a .RDA File After an RMU MOVE
RMU/VERIFY did not find a .RDA database area file which had been updated to
a new version by the RMU/MOVE of the associated database snapshot file which
had been executed on another node of the cluster.

The following example shows the error.

On Node1:
$ RMU/OPEN/ACC=UNR MF_PERSONNEL
On Node2:
$ RMU/OPEN/ACC=UNR MF_PERSONNEL
$ CREATE [.TEST] /DIR
$ RMU/MOVE/ONL/LOG MF_PERSONNEL RESUMES /SNAP=FILE=[.TEST]
On Node1:
$ RMU/VERIFY/LOG/TRANS=READ_ONLY/AREA=RESUMES/SNAP MF_PERSONNEL
%RMU-I-BGNROOVER, beginning root verification
%RMU-F-OPNFILERR, error opening file
DISK:[DIRECTORY]RESUMES.RDA;1
%RMU-F-FILNOTFND, file not found
%RMU-E-BDAREAOPN, unable to open file
DISK:[DIRECTORY]RESUMES.RDA;1 for storage area RESUMES
%RMU-F-ABORTVER, fatal error encountered; aborting verification

A workaround for this problem is to do the RMU/MOVE on the same node as the
RMU/VERIFY.

This problem has been corrected in Oracle Rdb7 Release 7.0.4.

3.4 Row Cache Errors Fixed
3.4.1 Row Cache Server Operator Notification

Similar to other Oracle Rdb7 database servers, the Row Cache Server (RCS)
process now sends start and terminate messages to the system operator if
database operator notifications are enabled.

The following example shows the format of the Row Cache Server operator
message:

3–20 Software Errors Fixed in Oracle Rdb7 Release 7.0.4

$ REPLY/ENABLE=CENTRAL
%%%%%%%%%%% OPCOM 28-SEP-1999 17:16:57.32 %%%%%%%%%%%
Operator TTA0: has been enabled, username RC

%%%%%%%%%%% OPCOM 28-SEP-1999 17:16:57.33 %%%%%%%%%%%
Operator status for operator TTA0:
CENTRAL

$ RMU/OPEN DUA0:[DB]MFP
%%%%%%%%%%% OPCOM 28-SEP-1999 17:15:47.66 %%%%%%%%%%%
Message from user RDBVMS on RYEROX
Oracle Rdb X7.1-00 Database DUA0:[DB]MFP.RDB;1 Event Notification
Row Cache Server started

3.4.2 Row Cache Did Not Avoid Certain Database Writes
In certain situations, the Oracle Rdb7 Row Cache feature did not avoid database
update I/O that it otherwise could have avoided. In particular, when a database
record was modified when it was not originally in the cache, it is possible that the
database page containing the row could be written back to the database where it
otherwise would not have to be.

Some applications may find a performance improvement when using the Row
Cache feature with Oracle Rdb7 Release 7.0.4 due to the reduction in unneeded
database write I/O for some update operations.

3.4.3 RMU /CLOSE /WAIT Would Not Always Wait When Row Cache Enabled
When using the Row Cache feature with many or large caches, it was possible
that the RMU /CLOSE /WAIT command could return to the user with the
database still actually being shut down.

This problem has been corrected in Oracle Rdb7 Release 7.0.4. The RMU /CLOSE
/WAIT command now does an additional check to make sure that the database is
not open before returning to the user.

3.5 Hot Standby Errors Fixed
3.5.1 RMU/REPLICATE AFTER START Command Fails Due to Lost AIJ Write

There is a situation where Hot Standby fails but has already committed a
transaction that did not get written to the AIJ journal. During re-start of Hot
Standby, the lost write is before the last committed transaction causing re-start
to fail. The following error message is returned during restart.

$ rmu/replicate after_journal start s_testdb.rdb -
/master_root=m_testdb.rdb

%RDMS-F-CANTSTARTLRS, error starting AIJ Log Roll-Forward Server process
%RMU-F-FATALRDB, Fatal error while accessing Oracle Rdb.

The following messages would appear in the LRS log file:

23-OCT-1999 07:49:41 - Transaction recovery not started during restart
23-OCT-1999 07:49:41 - This usually occurs when a manual roll-forward operation
23-OCT-1999 07:49:41 - using master database AIJ journals did not fully complete
23-OCT-1999 07:49:41 - This is sometimes caused by an AIJ switch-over operation
23-OCT-1999 07:49:41 - while Hot Standby is inactive

23-OCT-1999 07:49:41 - Failure reason: %RDMS-F-CANTSTARTLRS,
error starting AIJ Log Roll-Forward Server process

This problem has been corrected in Oracle Rdb7 Release 7.0.4.

Software Errors Fixed in Oracle Rdb7 Release 7.0.4 3–21

4
Documentation Corrections

This chapter provides information not currently available in the Oracle Rdb7
documentation set.

4.1 Documentation Corrections
4.1.1 Clarification of the DDLDONOTMIX Error Message

Bug 454080

The ALTER DATABASE statement performs two classes of functions: changing
the database root structures in the .RDB file and modifying the system metadata
in the RDB$SYSTEM storage area. The first class of changes do not require a
transaction to be active. However, the second class requires that a transaction be
active. Oracle Rdb does not currently support the mixing of these two classes of
ALTER DATABASE clauses.

When you mix clauses that fall into both classes, the error message
DDLDONOTMIX "the {SQL-syntax} clause can not be used with some ALTER
DATABASE clauses" is displayed, and the ALTER DATABASE statement fails.

SQL> alter database filename MF_PERSONNEL
cont> dictionary is not used
cont> add storage area JOB_EXTRA filename JOB_EXTRA;
%RDB-F-BAD_DPB_CONTENT, invalid database parameters in the database parameter
block (DPB)
-RDMS-E-DDLDONOTMIX, the "DICTIONARY IS NOT USED" clause can not be used with
some ALTER DATABASE clauses

The following clauses may be mixed with each other but may not appear with
other clauses such as ADD STORAGE AREA, or ADD CACHE.

DICTIONARY IS [NOT] REQUIRED

DICTIONARY IS NOT USED

MULTISCHEMA IS { ON | OFF }

CARDINALITY COLLECTION IS { ENABLED | DISABLED }

METADATA CHANGES ARE { ENABLED | DISABLED }

WORKLOAD COLLECTION IS { ENABLED | DISABLED }

If the DDLDONOTMIX error is displayed, then restructure the ALTER
DATABASE into two statements, one for each class of actions.

SQL> alter database filename MF_PERSONNEL
cont> dictionary is not used;
SQL> alter database filename MF_PERSONNEL
cont> add storage area JOB_EXTRA filename JOB_EXTRA;

Documentation Corrections 4–1

4.1.2 Compressed Sorted Index Entry Stored in Incorrect Storage Area
This note was originally included in the Oracle Rdb7 Release 7.0.1.3 and 7.0.2
Release Notes. The logical name documented in the note for those releases was
documented incorrectly. Below is a corrected note.

In specific cases, in versions V6.1 and V7.0 of Oracle Rdb, when a partitioned,
compressed sorted index was created after the data was inserted into the table,
b-tree entries may have been inserted into the wrong storage area.

All of the following criteria must be met in order for the possibility of this problem
to occur:

• CREATE INDEX is issued after there are records already in the table on
which the index is being created

• index must be partitioned over a single column

• index must have compression enabled

• scale factor must be zero on the columns of the index

• no collating sequences specified on the columns of the index

• no descending indexes

• MAPPING VALUES must not be specified

RMU/DUMP/AREA=xx will show that the b-tree entry was not stored in the
expected storage area. However, in versions V6.1 and V7.0 of Oracle Rdb, the
rows of the table can still be successfully retrieved.

The following example shows the problem:

create database
filename foo

create storage area Area_1
filename Area_1

create storage area Area_2
filename Area2;

create table T1
(C1 integer);

! insert data into table prior to index creation
insert into T1 values (0);
commit;

4–2 Documentation Corrections

! create index with COMPRESSION ENABLED
create index Index_1

on T1 (C1)
enable compression
store using (C1)

in Area_1 with limit of (0)
otherwise in Area_2;

COMMIT;
!
! Dump out the page for b-tree in AREA_1, there are 0 bytes stored.
! There should be 5 bytes stored for the b-tree entry.
!
RMU/DUMP/AREA=AREA_1
.
.
. total B-tree node size: 430

0030 2003 0240 line 0 (2:5:0) index: set 48
002F FFFFFFFF FFFF 0244 owner 47:-1:-1

0000 024C 0 bytes of entries <---***** no entry
8200 024E level 1, full suffix

00000000000000000000000000000000 0250 unused ’................’
.
.
.
!
! Dump out the page for b-tree in AREA_2, there are 5 bytes stored
!
RMU/DUMP/AREA=AREA_2
.
.
. total B-tree node size: 430

0031 2003 0240 line 0 (3:5:0) index: set 49
002F FFFFFFFF FFFF 0244 owner 47:-1:-1

000A 024C 10 bytes of entries
8200 024E level 1, full suffix

00 05 0250 5 bytes stored, 0 byte prefix <---entry
0100008000 0252 key ’.....’

22B1 10 0257 pointer 47:554:0
.
.
.

This problem occurs when index compression is enabled. Therefore, a workaround
is to create the index with compression disabled (which is the default). Once this
update kit is applied, it is recommended that the index be dropped and recreated
with compression enabled to rebuild the b-tree.

Note

In prior versions, the rows were successfully retrieved even though the
key values were stored in the wrong storage area. This was due to the
range query algorithm skipping empty partitions or scanning extra areas.

However, due to an enhancement in the algorithm for range queries on
partitioned SORTED indexes in Oracle Rdb7 Relese 7.0.2, the rows of the
table which are stored in the incorrect storage areas may not be retrieved
when using the partitioned index.

The optimized algorithm now only scans the relevant index areas (and
no longer skips over emtpy areas) resulting in only those rows being
returned. Therefore, it is recommended that the index be dropped and
re-created. For a short term solution, another alternative is to disable the

Documentation Corrections 4–3

new optimization by defining the logical RDMS$INDEX_PART_CHECK to
0.

This problem has been corrected in Oracle Rdb7 Release 7.0.1.3.

4.1.3 Partition Clause is Optional on CREATE STORAGE MAP
Bug 642158

In the Oracle Rdb7 SQL Reference Manual, the syntax diagram for the CREATE
STORAGE MAP statement incorrectly shows the partition clause as required
syntax. The partition clause is not a required clause.

This correction will appear in the next publication of the Oracle Rdb SQL
Reference Manual.

4.1.4 Oracle Rdb Logical Names
The Oracle Rdb7 Guide to Database Performance and Tuning contains a table
in Chapter 2 summarizing the Oracle Rdb logical names and configuration
parameters. The information in the following table supersedes the entries for the
RDM$BIND_RUJ_ALLOC_BLKCNT and RDM$BIND_RUJ_EXTEND_BLKCNT
logical names.

Logical Name
Configuration Parameter Function

RDM$BIND_RUJ_ALLOC_BLKCNT Allows you to override the default value of the
.ruj file. The block count value can be defined
between 0 and 2 billion with a default of 127.

RDM$BIND_RUJ_EXTEND_BLKCNT Allows you to pre-extend the .ruj files for each
process using a database. The block count value
can be defined between 0 and 65535 with a
default of 127.

4.1.5 Waiting for Client Lock Message
The Oracle Rdb7 Guide to Database Performance and Tuning contains a section
in Chapter 3 that describes the Performance Monitor Stall Messages screen. The
section contains a list describing the ‘‘Waiting for’’ messages. The description of
the ‘‘waiting for client lock’’ message was missing from the list.

A client lock indicates that an Oracle Rdb metadata lock is in use. The term
client indicates that Oracle Rdb is a client of the Oracle Rdb locking services.
The metadata locks are used to guarantee memory copies of the metadata (table,
index, and column definitions) are consistent with the on-disk versions.

The ‘‘waiting for client lock’’ message means the database user is requesting an
incompatible locking mode. For example, when trying to delete a table which is
in use, the drop operation requests a PROTECTED WRITE lock on the metadata
object (such as a table) which is incompatible with the existing PROTECTED
READ lock currently used by others of the table.

These metadata locks consist of three longwords. The lock is displayed in text
format first, followed by its hexadecimal representation. The text version masks
out nonprintable characters with a period (.).

4–4 Documentation Corrections

The leftmost value seen in the hexadecimal output contains the ID of the object.
The following ID describes the tables, routines, modules and storage map areas.

• For tables and views, the ID represents the unique value found in the
RDB$RELATION_ID column of the RDB$RELATIONS system table for the
given table.

• For routines, the ID represents the unique value found in the
RDB$ROUTINE_ID column of the RDB$ROUTINES system table for the
given routine.

• For modules, the ID represents the unique value found in the
RDB$MODULE_ID column of the RDB$MODULES system table for the
given module.

• For storage map areas, the ID presents the physical area ID. The ‘‘waiting for
client lock’’ message on storage map areas is very rare. This may be raised
for databases that have been converted from versions prior to Oracle Rdb 5.1.

The next value displayed signifies the object type. The following table describes
objects and their hexadecimal type values:

Table 4–1 Object Type Values

Object Hexadecimal Value

Tables or views 00000004

Routines 00000006

Modules 00000015

Storage map areas 0000000E

The last value in the hexadecimal output represents the lock type. The value 55
indicates this is a client lock.

The following example shows a ‘‘waiting for client’’ lock message from the Stall
Messages screen:

Process.ID Since...... Stall.reason............................. Lock.ID.
46001105:2 10:40:46.38 - waiting for client ’........’ 000000190000000400000055

1 2 3 4

The following list describes each part of the client lock:

1 indicates nonprintable characters.

2 00000019 indicates unique identifier hex value 19 (RDB$RELATION_ID =
25).

3 00000004 indicates object type 4 which is a table.

4 00000055 indicates this is a client lock.

To determine the name of the referenced object given the Lock ID the following
queries can be used based on the object type:

SQL> SELECT RDB$RELATION_NAME FROM RDB$RELATIONS WHERE RDB$RELATION_ID = 25;
SQL> SELECT RDB$MODULE_NAME FROM RDB$MODULES WHERE RDB$MODULE_ID = 12;
SQL> SELECT RDB$ROUTINE_NAME FROM RDB$ROUTINES WHERE RDB$ROUTINE_ID = 7;

Note

Because the full client lock output is long, it may require more space than

Documentation Corrections 4–5

is allotted for the Stall.reason column and therefore can be overwritten by
the Lock.ID. column output.

For more detailed lock information, perform the following steps:

1. Press the L option from the horizontal menu to display a menu of
Lock IDs.

2. Select the desired Lock ID.

4.1.6 Documentation Error in Oracle Rdb7 Guide to Database Performance
and Tuning

The Oracle Rdb7 Guide to Database Performance and Tuning, Volume 2 contains
an error in section C.7, ‘‘Displaying Sort Statistics with the R Flag’’.

When describing the output from this debugging flag, bullet 9 states:

Work File Alloc indicates how many work files were used in the sort
operation. A zero (0) value indicates that the sort was accomplished
completely in memory.

This is incorrect. This statistic should be described as shown:

Work File Alloc indicates how much space (in blocks) was allocated in the
work files for this sort operation. A zero (0) value indicates that the sort was
accomplished completely in memory.

This error will be corrected in a future release of Oracle Rdb Guide to Database
Performance and Tuning.

4.1.7 SET FLAGS Option IGNORE_OUTLINE Not Available
Bug 510968

The Oracle Rdb7 SQL Reference Manual described the option IGNORE_
OUTLINE in Table 7-6 of the SET FLAGS section. However, this keyword
was not implemented in Oracle Rdb7.

This has been corrected in this release of Oracle Rdb7. This keyword is now
recognized by the SET FLAGS statement. As a workaround the logical name
RDMS$BIND_OUTLINE_FLAGS "I" can be used to set this attribute.

4.1.8 SET FLAGS Option INTERNALS Not Described
The Oracle Rdb7 SQL Reference Manual does not describe the option
INTERNALS in Table 7-6 in the SET FLAGS section. This keyword was available
in first release of Oracle Rdb7 and is used to enable debug flags output for
internal queries such as constraints and triggers. It can be used in conjunction
with other options such as STRATEGY, BLR, and EXECUTION. For example, the
following flag settings are equivalent to defining the RDMS$DEBUG_FLAGS as
ISn and shows the strategy used by the trigge’s actions on the AFTER DELETE
trigger on the EMPLOYEES table.

SQL> SET FLAGS ’STRATEGY, INTERNAL, REQUEST_NAME’;
SQL> SHOW FLAGS

4–6 Documentation Corrections

Alias RDB$DBHANDLE:
Flags currently set for Oracle Rdb:

INTERNALS,STRATEGY,PREFIX,REQUEST_NAMES
SQL> DELETE FROM EMPLOYEES WHERE EMPLOYEE_ID = ’00164’;
~S: Trigger name EMPLOYEE_ID_CASCADE_DELETE
Get Temporary relation Retrieval by index of relation DEGREES

Index name DEG_EMP_ID [1:1]
~S: Trigger name EMPLOYEE_ID_CASCADE_DELETE
Get Temporary relation Retrieval by index of relation JOB_HISTORY

Index name JOB_HISTORY_HASH [1:1]
~S: Trigger name EMPLOYEE_ID_CASCADE_DELETE
Get Temporary relation Retrieval by index of relation SALARY_HISTORY

Index name SH_EMPLOYEE_ID [1:1]
~S: Trigger name EMPLOYEE_ID_CASCADE_DELETE
Conjunct Get Retrieval by index of relation DEPARTMENTS

Index name DEPARTMENTS_INDEX [0:0]
Temporary relation Get Retrieval by index of relation EMPLOYEES

Index name EMPLOYEES_HASH [1:1] Direct lookup
1 row deleted

4.1.9 Documentation for VALIDATE_ROUTINE Keyword for SET FLAGS
The SET FLAGS section of the Oracle Rdb7 SQL Reference Manual omitted
the description of the VALIDATE_ROUTINE keyword (which can be negated
as NOVALIDATE_ROUTINE). This keyword enables the re-validation of an
invalidated stored procedure or function. This flag has the same action as
the logical RDMS$VALIDATE_ROUTINE or the UNIX environment variable
SQL_VALIDATE_ROUTINE described in the Oracle Rdb7 Guide to Database
Performance and Tuning.

This example shows the re-validation of a stored procedure. When the stored
routine is successfully prepared (but not executed), the setting of VALIDATE_
ROUTINE causes the entry for this routine in the RDB$ROUTINES system table
to be set as valid.

SQL> SET TRANSACTION READ WRITE;
SQL> SET FLAGS ’VALIDATE_ROUTINE’;
SQL> SET NOEXECUTE;
SQL> CALL ADD_EMPLOYEE (’Smith’);
SQL> SET EXECUTE;
SQL> COMMIT;

In this example, the use of the SET NOEXECUTE statement in interactive SQL
allows the stored routine to be successfully compiled, but it is not executed.

4.1.10 Documentation for Defining the RDBSERVER Logical Name
Bugs 460611 and 563649.

Sections 4.3.7.1 and 4.3.7.2 in the Oracle Rdb7 for OpenVMS Installation and
Configuration Guide provide the following examples for defining the RDBSERVER
logical name:

$ DEFINE RDBSERVER SYS$SYSTEM:RDBSERVER70.EXE
and

$ DEFINE RDBSERVER SYS$SYSTEM:RDBSERVER61.EXE

These definitions are inconsistent with other command procedures that attempt
to reference the RDBSERVERxx.EXE image. The following is one example where
the RDBSERVER.COM procedure references SYS$COMMON:<SYSEXE> and
SYS$COMMON:[SYSEXE], rather than SYS$SYSTEM:

Documentation Corrections 4–7

$ if .not. -
((f$locate ("SYS$COMMON:<SYSEXE>",rdbserver_image) .ne. log_len) .or. -

(f$locate ("SYS$COMMON:[SYSEXE]",rdbserver_image) .ne. log_len))
$ then
$ say "’’rdbserver_image’ is not found in SYS$COMMON:<SYSEXE>"
$ say "RDBSERVER logical is ’’rdbserver_image’"
$ exit
$ endif

In this case, if the logical name were defined as instructed in the Oracle Rdb7 for
OpenVMS Installation and Configuration Guide, the image would not be found.

The Oracle Rdb7 for OpenVMS Installation and Configuration Guide should
define the logical name as follows:

DEFINE RDBSERVER SYS$COMMON:<SYSEXE>RDBSERVER70.EXE
and

DEFINE RDBSERVER SYS$COMMON:<SYSEXE>RDBSERVER61.EXE

4.1.11 Undocumented SET Commands and Language Options
The following SET statements were omitted from the Oracle Rdb7
documentation.

4.1.11.1 QUIET COMMIT Option
The SET QUIET COMMIT statement (for interactive and dynamic SQL), the
module header option QUIET COMMIT, the /QUIET_COMMIT (and /NOQUIET_
COMMIT) qualifier for SQL module language, or the /SQLOPTIONS=QUIET_
COMMIT (and NOQUIET_COMMIT) option for the SQL language precompiler
allows the programmer to control the behavior of the COMMIT and ROLLBACK
statements in cases where there is no active transaction.

By default, if there is no active transaction, SQL will raise an error when
COMMIT or ROLLBACK is executed. This default is retained for backward
compatibility for applications that may wish to detect the situation. If QUIET
COMMIT is set to ON, then a COMMIT or ROLLBACK executes successfully
when there is no active transaction.

Note

Within a compound statement, the COMMIT and ROLLBACK statements
in this case are ignored.

Examples
In interactive or dynamic SQL, the following SET command can be used to disable
or enable error reporting for COMMIT and ROLLBACK when no transaction is
active. The parameter to the SET command is a string literal or host variable
containing the keyword ON or OFF. The keywords may be in any case (upper,
lower, or mixed).

SQL> COMMIT;
%SQL-F-NO_TXNOUT, No transaction outstanding
SQL> ROLLBACK;
%SQL-F-NO_TXNOUT, No transaction outstanding
SQL> SET QUIET COMMIT ’on’;
SQL> ROLLBACK;
SQL> COMMIT;
SQL> SET QUIET COMMIT ’off’;
SQL> COMMIT;
%SQL-F-NO_TXNOUT, No transaction outstanding

4–8 Documentation Corrections

In the SQL module language or precompiler header, the clause QUIET COMMIT
can be used to disable or enable error reporting for COMMIT and ROLLBACK
when no transaction is active. The keyword ON or OFF must be used to enable
or disable this feature. The following example enables QUIET COMMIT so that
no error is reported if a COMMIT is executed when no transaction is active. For
example:

MODULE TXN_CONTROL
LANGUAGE BASIC
PARAMETER COLONS
QUIET COMMIT ON

PROCEDURE S_TXN (SQLCODE);
SET TRANSACTION READ WRITE;

PROCEDURE C_TXN (SQLCODE);
COMMIT;

4.1.11.2 COMPOUND TRANSACTIONS Option
The SET COMPOUND TRANSACTIONS statement (for interactive and dynamic
SQL) and the module header option COMPOUND TRANSACTIONS allows the
programmer to control the SQL behavior for starting default transactions for
compound statements.

By default, if there is no current transaction, SQL will start a transaction before
executing a compound statement or stored procedure. However, this may conflict
with the actions within the procedure, or may start a transaction for no reason if
the procedure body does not perform any database access. This default is retained
for backward compatibility for applications that may expect a transaction to be
started for the procedure.

If COMPOUND TRANSACTIONS is set to EXTERNAL, then SQL starts a
transaction before executing the procedure; otherwise, if it is set to INTERNAL,
it allows the procedure to start a transaction as required by the procedure
execution.

Examples
In interactive or dynamic SQL, the following SET command can be used to disable
or enable transactions started by the SQL interface. The parameter to the SET
command is a string literal or host variable containing the keyword INTERNAL
or EXTERNAL. The keywords may be in any case (upper, lower, or mixed). For
example:

SQL> SET COMPOUND TRANSACTIONS ’internal’;
SQL> CALL START_TXN_AND_COMMIT ();
SQL> SET COMPOUND TRANSACTIONS ’external’;
SQL> CALL UPDATE_EMPLOYEES (...);

In the SQL module language or precompiler header, the clause COMPOUND
TRANSACTIONS can be used to disable or enable starting a transaction for
procedures. The keyword INTERNAL or EXTERNAL must be used to enable or
disable this feature.

MODULE TXN_CONTROL
LANGUAGE BASIC
PARAMETER COLONS
COMPOUND TRANSACTIONS INTERNAL

PROCEDURE S_TXN (SQLCODE);
BEGIN
SET TRANSACTION READ WRITE;
END;

Documentation Corrections 4–9

PROCEDURE C_TXN (SQLCODE);
BEGIN
COMMIT;
END;

4.1.12 Undocumented Size Limit for Indexes with Keys Using Collating
Sequences

Bug 586079

When a column is defined with a collating sequence, the index key is specially
encoded to incorporate the correct ordering (collating) information. This special
encoding takes more space than keys encoded for ASCII (the default when no
collating sequence is used). Therefore, the encoded string uses more than the
customary one byte per character of space within the index. This is true for all
versions of Oracle Rdb that support collating sequences.

For all collating sequences, except Norwegian, the space required is
approximately 9 bytes for every 8 characters. So, a CHAR (24) column will
require approximately 27 bytes. For Norwegian collating sequences, the space
required is approximately 10 bytes for every 8 characters.

The space required for encoding the string must be taken into account when
calculating the size of an index key against the limit of 255 bytes. Suppose a
column defined with a collating sequence of GERMAN was used in an index. The
length of that column is limited to a maximum of 225 characters because the key
will be encoded in 254 bytes.

The following example demonstrates how a 233 character column, defined with a
German collating sequence and included in an index, exceeds the index size limit
of 255 bytes, even though the column is defined as less than 255 characters in
length:

SQL> CREATE DATABASE
cont> FILENAME ’TESTDB.RDB’
cont> COLLATING SEQUENCE GERMAN GERMAN;
SQL> CREATE TABLE EMPLOYEE_INFO (
cont> EMP_NAME CHAR (233));
SQL> CREATE INDEX EMP_NAME_IDX
cont> ON EMPLOYEE_INFO (
cont> EMP_NAME ASC)
cont> TYPE IS SORTED;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-INDTOOBIG, requested index is too big

4.1.13 Changes to RMU/REPLICATE AFTER/BUFFERS Command
The behavior of the RMU/REPLICATE AFTER/BUFFERS command has been
changed. The /BUFFERS qualifier may be used with either the CONFIGURE
option or the START option.

When using local buffers, the AIJ log roll-forward server (LRS) will use a
minimum of 4096 buffers. The value provided to the /BUFFERS qualifier will
be accepted, but it will be ignored if it is less than 4096. In addition, further
parameters will be checked and the number of buffers may be increased if the
resulting calculations are greater than the number of buffers specified by the
/BUFFERS qualifier. If the database is configured to use more than 4096 AIJ
request blocks (ARBs), then the number of buffers may be increased to the
number of ARBs configured for the database. The LRS ensures that there are at
least 10 buffers for every possible storage area in the database. Thus, if the total

4–10 Documentation Corrections

number of storage areas (both used and reserved) multiplied by 10 results in a
greater number of buffers, that number will be used.

When global buffers are used, the number of buffers used by the AIJ log roll-
forward server is determined as follows:

• If the /BUFFERS qualifier is omitted and the /ONLINE qualifier is specified,
the number of buffers will default to the previously configured value, if any,
or 256, whichever is larger.

• If the /BUFFERS qualifier is omitted and the /ONLINE qualifier is not
specified or the /NOONLINE is specified, the number of buffers will default to
the maximum number of global buffers allowed per user (‘‘USER LIMIT’’), or
256, whichever is larger.

• If the /BUFFERS qualifier is specified, that value must be at least 256, and it
may not be greater than the maximum number of global buffers allowed per
user (‘‘USER LIMIT’’).

The /BUFFER qualifier now enforces a minimum of 256 buffers for the AIJ log
roll-forward server. The maximum number of buffers allowed is still 524288
buffers.

4.1.14 Change in the Way RDMAIJ Server is Set Up in UCX
Starting with Oracle Rdb V7.0.2.1, the RDMAIJ image has become a varianted
image. Therefore, the information in section 2.12, ‘‘Step 10: Specify the Network
Transport Protocol,’’ of the Oracle Rdb7 and Oracle CODASYL DBMS Guide
to Hot Standby Databases has become outdated in regards to setting up the
RDMAIJSERVER object when using UCX as the network transport protocol. The
UCX SET SERVICE command should now look similar to the following:

$ UCX SET SERVICE RDMAIJ -
/PORT=<port_number> -
/USER_NAME=RDMAIJ -
/PROCESS_NAME=RDMAIJ -
/FILE=SYS$SYSTEM:RDMAIJSERVER.com -
/LIMIT=<limit>

And for Oracle Rdb multiversion, it should look similar to the following:

$ UCX SET SERVICE RDMAIJ70 -
/PORT=<port_number> -
/USER_NAME=RDMAIJ70 -
/PROCESS_NAME=RDMAIJ70 -
/FILE=SYS$SYSTEM:RDMAIJSERVER70.com -
/LIMIT=<limit>

The installation procedure for Oracle Rdb creates a user named RDMAIJ(nn)
and places a file called RDMAIJSERVER(nn).com in SYS$SYSTEM and the
RMONSTART(nn).COM command procedure will try to enable a service called
RDMAIJ(nn) if UCX is installed and running.

Changing the RDMAIJ server to a multivarianted image does not impact
installations using DECNet since the correct DECNet object is created during the
Rdb installation.

Documentation Corrections 4–11

4.1.15 CREATE INDEX Supported for Hot Standby
On page 1-13 of the Guide to Hot Standby Databases, the add new index operation
is incorrectly listed as an offline operation not supported by Hot Standby. The
CREATE INDEX operation is now fully supported by Hot Standby, as long as the
transaction does not span all available AIJ journals, including emergency AIJ
journals.

4.1.16 Dynamic OR Optimization Formats
Bug 711643

In Table C-2 on Page C-7 of the Oracle Rdb7 Guide to Database Performance
and Tuning, the dynamic OR optimization format is incorrectly documented as
[l:h...]n. The correct formats for Oracle Rdb Release 7.0 and later are [(l:h)n] and
[l:h,l2:h2].

4–12 Documentation Corrections

5
Known Problems and Restrictions

This chapter describes problems, restrictions, and workarounds known to exist in
Oracle Rdb7 Release 7.0.5.

5.0.1 Oracle Rdb and OpenVMS ODS-5 Volumes
The OpenVMS Version 7.2 release introduced Extended File Specifications, which
consists of two major components:

• A new, optional, volume structure, ODS-5, which provides support for file
names that are longer and have a greater range of legal characters than in
previous versions of OpenVMS

• Support for deep directories

ODS-5 was introduced primarily to provide enhanced file sharing capabilities for
users of Advanced Server for OpenVMS 7.2 (formerly known as PATHWORKS for
OpenVMS), as well as DCOM and JAVA applications.

In some cases, Oracle Rdb performs its own file and directory name parsing and
explicitly requires ODS-2 (the traditional OpenVMS volume structure) file and
directory name conventions to be followed. Because of this knowledge, Oracle
does not support any Oracle Rdb database file components (including root files,
storage area files, after image journal files, record cache backing store files,
database backup files, after image journal backup files, etc.) that utilize any
non-ODS-2 file naming features. For this reason, Oracle recommends that Oracle
Rdb database components not be located on ODS-5 volumes.

A future release of Oracle Rdb is expected to relax some of these restrictions and
support ODS-5 volumes.

5.0.2 Clarification of the USER Impersonation Provided by the Oracle Rdb
Server

Bug 551240

In Oracle Rdb V6.1, a new feature was introduced which allowed a user to
attach (or connect) to a database by providing a username (USER keyword)
and a password (USING keyword). This functionality allows the Rdb Server to
impersonate those users in two environments.

• Remote Database Access. When DECnet is used as the remote transport, the
Rdb/Dispatch layer of Oracle Rdb uses the provided username and password,
or proxy access to create a remote process which matches the named user.
However, in a remote connection over TCP/IP, the RDBSERVER process is
always logged into RDB$REMOTE rather than a specified user account. In
this case the Rdb Server impersonates the user by using the user’s UIC (user
identification code) during privilege checking. The UIC is assigned by the
OpenVMS AUTHORIZE utility.

Known Problems and Restrictions 5–1

• SQL/Services database class services. When SQL/Services (possibly accessed
by ODBC) accesses a database, it allows the user to logon to the database and
the SQL/Services server then impersonates that user in the database.

When a database has access control established using OpenVMS rights
identifiers, then access checking in these two environments does not work
as expected. For example, if a user JONES was granted the rights identifier
PAYROLL_ACCESS, then you would expect a table in the database with SELECT
access granted to PAYROLL_ACCESS to be accessible to JONES. This does not
currently work because the Rdb Server does not have the full OpenVMS security
profile loaded, just the UIC. So only access granted to JONES is allowed.

This problem results in an error being reported such as the following from ODBC:

[Oracle][ODBC][Rdb]%RDB-E-NO_PRIV privileged by database facility (#-1028)

This is currently a restriction in this release of Oracle Rdb. In the next major
release, support will be provided to inherit the users full security profile into the
database.

5.0.3 Index STORE Clause WITH LIMIT OF Not Enforced in Single Partition
Map

Bug 413410

An index which has a STORE clause with a single WITH LIMIT OF clause and
no OTHERWISE clause doesn’t validate the inserted values against the high
limit. Normally values beyond the last WITH LIMIT OF clause are rejected
during INSERT and UPDATE statements.

Consider this example:

create table PTABLE (
NR

INTEGER,
A

CHAR (2));
create index NR_IDX

on PTABLE (
NR)
type is HASHED
store using (NR)

in EMPIDS_LOW
with limit of (10);

When a value is inserted for NR that exceeds the value 10, then an error such as
"%RDMS-E-EXCMAPLIMIT, exceeded limit on last partition in storage map for
NR_IDX" should be generated. However, this error is only reported if the index
has two or more partitions.

A workaround for this problem is to create a CHECK constraint on the column to
restrict the upper limit. e.g. CHECK (NR <= 10). This check constraint should
be defined as NOT DEFERRABLE and will be solved using an index lookup.

This problem will be corrected in a future version of Oracle Rdb.

5–2 Known Problems and Restrictions

5.0.4 Unexpected NO_META_UPDATE Error Generated by DROP MODULE ...
CASCADE When Attached by PATHNAME

Bug 755182

The SQL statement DROP MODULE ... CASCADE may sometimes generate an
unexpected NO_META_UPDATE error. This occurs when the session attaches to
a database by PATHNAME.

SQL> drop module m1 cascade;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-OBJ_INUSE, object "M1P1" is referenced by M2.M2P1 (usage: Procedure)
-RDMS-E-MODNOTDEL, module "M1" has not been deleted

This error occurs because the CASCADE option is ignored because the Oracle
CDD/Repository does not support CASCADE. The workaround is to attach by
FILENAME and perform the metadata operation.

In a future version of Oracle Rdb, an informational message will be issued
describing the downgrade from CASCADE to RESTRICT in such cases.

5.0.5 Unexpected DATEEQLILL Error During IMPORT With CREATE INDEX or
CREATE STORAGE MAP

Bug 1094071

When the SQL IMPORT statement includes CREATE STORAGE MAP or
CREATE INDEX statements which use TIMESTAMP or DATE ANSI literals in
the WITH LIMIT OF clause, it fails with the following error:

%SQL-F-UNSDATXPR, Unsupported date expression
-SQL-F-DATEEQLILL, Operands of date/time comparison are incorrect

The same CREATE STORAGE MAP or CREATE INDEX statements work
correctly when used outside of the IMPORT statement.

This error is generated because the SQL IMPORT statement tries to validate the
data type of the column against that of the literal value. However, during this
phase of the IMPORT, the table does not yet exist.

A workaround for this problem is to use DATE VMS literals in the WITH LIMIT
OF clause and allow the Rdb Server to perform the data type conversion at
runtime.

This restriction will be relaxed in a future version of Oracle Rdb.

5.0.6 Application and Oracle Rdb Both Using SYS$HIBER
In application processes that use Oracle Rdb and the $HIBER system service
(possibly via RTL routines such as LIB$WAIT), it is important that the
application ensures that the event being waited for has actually occurred.
Oracle Rdb uses $HIBER/$WAKE sequences for interprocess communications
particularly when the ALS (AIJ Log Server) or the Row Cache features are
enabled.

Oracle Rdb’s use of the $WAKE system service can interfere with other users of
$HIBER (such as the routine LIB$WAIT) that do not check for event completion,
possibly causing a $HIBER to be unexpectedly resumed without waiting at all.

To avoid these situations, consider altering the application to use a code sequence
that avoids continuing without a check for the operation (such as a delay or a
timer firing) being complete.

Known Problems and Restrictions 5–3

The following pseudo-code shows one example of how a flag can be used to
indicate that a timed-wait has completed correctly. The wait does not complete
until the timer has actually fired and set TIMER_FLAG to TRUE. This code
relies on ASTs being enabled.

ROUTINE TIMER_WAIT:
BEGIN
! Clear the timer flag
TIMER_FLAG = FALSE

! Schedule an AST for sometime in the future
STAT = SYS$SETIMR (TIMADR = DELTATIME, ASTRTN = TIMER_AST)
IF STAT <> SS$_NORMAL THEN LIB$SIGNAL (STAT)

! Hibernate. When the $HIBER completes, check to make
! sure that TIMER_FLAG is set indicating that the wait
! has finished.
WHILE TIMER_FLAG = FALSE
DO SYS$HIBER()
END

ROUTINE TIMER_AST:
BEGIN
! Set the flag indicating that the timer has expired
TIMER_FLAG = TRUE

! Wake the main-line code
STAT = SYS$WAKE ()
IF STAT <> SS$_NORMAL THEN LIB$SIGNAL (STAT)
END

Starting with OpenVMS V7.1, the LIB$WAIT routine has been enhanced via
the FLAGS argument (with the LIB$K_NOWAKE flag set) to allow an alternate
wait scheme (using the $SYNCH system service) that can avoid potential
problems with multiple code sequences using the $HIBER system service. See
the OpenVMS RTL Library (LIB$) Manual for more information about the
LIB$WAIT routine.

5.0.7 IMPORT Unable to Import Some View Definitions
Bug 520651

View definitions that reference SQL functions, that is functions defined by
the CREATE MODULE statement, cannot currently be imported by the SQL
IMPORT statement. This is because the views are defined before the functions
themselves exist.

The following example shows the errors from IMPORT.

IMPORTing view TVIEW
%SQL-F-NOVIERES, unable to import view TVIEW
%RDB-E-NO_META_UPDATE, metadata update failed
-RDB-E-OBSOLETE_METADA, request references metadata objects that no
longer exist
-RDMS-E-RTNNEXTS, routine FORMAT_OUT does not exist in this database
%RDB-E-OBSOLETE_METADA, request references metadata objects that no
longer exist
-RDMS-F-TABNOTDEF, relation TVIEW is not defined in database

5–4 Known Problems and Restrictions

The following script can be used to demonstrate the problem.

create database filename badimp;
create table t (sex char);

create module TFORMAT
language SQL

function FORMAT_OUT (:s char)
returns char(4);
return (case :s

when ’F’ then ’Female’
when ’M’ then ’Male’
else NULL
end);

end module;

create view TVIEW (m_f) as
select FORMAT_OUT (sex) from t;

commit;

export database filename badimp into exp;
drop database filename badimp;
import database from exp filename badimp;

This restriction will be lifted in a future release of Oracle Rdb. Currently the
workaround is to save the view definitions and reapply them after the IMPORT
completes.

This restriction does not apply to external functions, created using the CREATE
FUNCTION statement, as these database objects are defined before tables and
views.

5.0.8 AIJSERVER Privileges
For security reasons, the AIJSERVER account ("RDMAIJSERVER") is created
with only NETMBX and TMPMBX privileges. These privileges are sufficient to
start Hot Standby, in most cases.

However, for production Hot Standby systems, these privileges are not adequate
to ensure continued replication in all environments and workload situations.
Therefore, Oracle recommends that the DBA provide the following additional
privileges for the AIJSERVER account:

• ALTPRI

This privilege allows the AIJSERVER to adjust its own priority to ensure
adequate quorum (CPU utilization) to prompt message processing.

• PSWAPM

This privilege allows the AIJSERVER to enable and disable process swapping,
also necessary to ensure prompt message processing.

• SETPRV

This privilege allows the AIJSERVER to temporarily set any additional
privileges it may need to access the standby database or its server processes.

• SYSPRV

This privilege allows the AIJSERVER to access the standby database rootfile,
if necessary.

• WORLD

Known Problems and Restrictions 5–5

This privilege allows the AIJSERVER to more accurately detect standby
database server process failure and handle network failure more reliably.

5.0.9 Lock Remastering and Hot Standby
When using the Hot Standby feature, Oracle recommends that the VMS
distributed lock manager resource tree be mastered on the standby node where
Hot Standby is started. This can be using any of the following methods:

• Disable dynamic lock remastering. This can be done dynamically by setting
the SYSGEN parameter PE1 to the value 1.

When using this option, be sure that Hot Standby is started on the node
where the standby database is first opened.

• Increasing the LOCKDIRWT value for the LRS node higher than any other
node in the same cluster. However, this is not a dynamic SYSGEN parameter,
and a node re-boot is required.

Failure to prevent dynamic lock remastering may cause severe performance
degradation for the standby database, which ultimately may be reflected by
decreased master database transaction throughput.

5.0.10 RDB_SETUP Privilege Error
Rdb Web Agent V3.0 exposes a privilege problem with Rdb V7.0 and later. This
will be fixed in the next Rdb7 release.

The RDB_SETUP function fails with %RDB-E-NO_PRIV, privilege denied by
database facility.

It appears that the only workaround is to give users DBADM privilege. Oracle
Corporation does not recommend giving users the DBADM privilege.

5.0.11 Starting Hot Standby on Restored Standby Database May Corrupt
Database

If a standby database is modified outside of Hot Standby, then backed up and
restored, Hot Standby will appear to start up successfully but will corrupt the
standby database. A subsequent query of the database will return unpredictable
results, possibly in a bugcheck in DIOFETCH$FETCH_ONE_LINE. When the
standby database is restored from a backup of itself, the database is marked as
unmodified. Therefore, Hot Standby cannot tell whether the database had been
modified before the backup was taken.

WORKAROUND: None.

5.0.12 Restriction on Compound Statement Nesting Levels
The use of multiple nesting levels of compound statements such as CASE or IF-
THEN-ELSE within multistatement procedures can result in excessive memory
usage during the compile of the procedure. Virtual memory problems have been
reported with 10 or 11 levels of nesting. The following example shows an outline
of the type of nesting that can lead to this problem.

CREATE MODULE MY_MOD LANGUAGE SQL
PROCEDURE MY PROCEDURE

(PARAMETERS);

BEGIN
DECLARE;

SET :VARS = 0;

5–6 Known Problems and Restrictions

SELECT;
GET DIAGNOSTICS EXCEPTION 1 :FLAG = RETURNED_SQLCODE;
CASE :FLAG ! Case #1

WHEN 100 THEN SET ...;
WHEN -811 THEN SET ...;
WHEN 0 THEN

SET ...; SELECT ...;
GET DIAGNOSTICS EXCEPTION 1 :FLAG = RETURNED_SQLCODE;
CASE :FLAG ! Case #2

WHEN 0 THEN SET ...;
WHEN -811 THEN SET ...;
WHEN 100 THEN

UPDATE...; SET ...;
GET DIAGNOSTICS EXCEPTION 1 :FLAG = RETURNED_SQLCODE;
IF :FLAG= 100 THEN SET ...; ! #1
ELSE

IF :FLAG < 0 THEN SET...; ! #2
ELSE

DELETE ...
GET DIAGNOSTICS EXCEPTION 1 :FLAG = RETURNED_SQLCODE;
IF :FLAG= 100 THEN SET...; ! #3

SET ...;
ELSE

IF :FLAG < 0 THEN SET...; ! #4
ELSE

IF IN_CHAR_PARAM = ’S’ THEN ! #5
UPDATE ...
GET DIAGNOSTICS EXCEPTION 1 :FLAG = RETURNED_SQLCODE;

IF :FLAG= 100 THEN SET ...; ! #6
ELSE

IF :FLAG < 0 THEN SET...; ! #7
END IF; ! #7

END IF; ! #6
END IF; ! #5

IF :FLAG = 0 THEN ! #5
UPDATE ...
GET DIAGNOSTICS EXCEPTION 1 :FLAG = RETURNED_SQLCODE;
IF :FLAG= 100 THEN SET ...; ! #6
ELSE

IF :FLAG < 0 THEN SET ...; ! #7
ELSE

DELETE ...
GET DIAGNOSTICS EXCEPTION 1 :FLAG = RETURNED_SQLCODE:
IF :FLAG= 100 THEN SET ...; ! #8
ELSE

IF :FLAG < 0 THEN SET ...; ! #9
ELSE

DELETE ...;
GET DIAGNOSTICS EXCEPTION 1 :FLAG = RETURNED_SQLCODE;
IF :FLAG= 100 THEN SET ...; ! #10

SET ...;
ELSE

IF :FLAG < 0 THEN SET ...; ! #11
END IF; (11 end if’s for #11 - #1)

ELSE SET ...;
END CASE; ! Case #2

ELSE SET ...;
END CASE; ! Case #1

END;
END MODULE;

Known Problems and Restrictions 5–7

Workaround: Reduce the complexity of the multistatement procedure. Use fewer
levels of compound statement nesting by breaking the multistatement procedure
into smaller procedures or by using the CALL statement to execute nested stored
procedures.

5.0.13 Back Up All AIJ Journals Before Performing a Hot Standby Switchover
Operation

Prior to performing a proper Hot Standby switchover operation from the old
master database to the new master database (old standby database), be sure to
back up ALL AIJ journals.

If you do not back up the AIJ journals on the old master database prior to
switchover, they will be initialized by the Hot Standby startup operation, and you
will not have a backup of those AIJ journals.

Failure to back up these journals may place your new master database at risk of
not being able to be recovered, requiring another fail-over in the event of system
failure.

5.0.14 Concurrent DDL and Read-Only Transaction on the Same Table Not
Compatible

It is possible that a read-only transaction could generate a bugcheck at
DIOBND$FETCH_AIP_ENT + 1C4 if there is an active, uncommitted transaction
that is making metadata changes to the same table. Analysis shows that the
snapshot transaction is picking up stale metadata information. Depending
on what metatdata modifications are taking place, it is possible for metadata
information to be removed from the system tables but still exist in the snapshot
file. When the read-only transaction tries to use that information, it no longer
exists and causes a bugcheck.

The following example shows the actions of the two transactions:

A: B:
attach
set transaction read write

attach
set transaction read only

drop index emp_last_name
select * from employees
...bugcheck...

The only workaround is to avoid running the two transactions together.

5.0.15 Oracle Rdb and the SRM_CHECK Tool
The Alpha Architecture Reference Manual, Third Edition (AARM) describes
strict rules for using interlocked memory instructions. The Compaq Alpha 21264
(EV6) processor and all future Alpha processors are more stringent than their
predecessors in their requirement that these rules be followed. As a result, code
that has worked in the past despite noncompliance may now fail when executed
on systems featuring the new 21264 processor.

Oracle Rdb Release 7.0.3 supports the Compaq Alpha 21264 (EV6) processor.
Oracle has performed extensive testing and analysis of the Rdb code to ensure
that it is compliant with the rules for using interlocked memory instructions.

5–8 Known Problems and Restrictions

However, customers using the Compaq supplied SRM_CHECK tool may find
that several of the Oracle Rdb images cause the tool to report potential alpha
architecture violations. Although SRM_CHECK can normally identify a code
section in an image by the section’s attributes, it is possible for OpenVMS images
to contain data sections with those same attributes. As a result, SRM_CHECK
may scan data as if it were code, and occasionally, a block of data may look like
a noncompliant code sequence. This is the case with the Oracle Rdb supplied
images. There is no actual instruction stream violation.

However, customers must use the SRM_CHECK tool on their own application
executable image files. It is possible that applications linked with very old version
of Oracle Rdb (versions prior to Oracle Rdb Release 6.0-05) could have included
illegal interlocked memory instruction sequences produced by very old versions of
compilers. This code was included in the Oracle Rdb object library files for some
very old versions of Oracle Rdb.

If errant instruction sequences are detected in the objects supplied by the
Oracle Rdb object libraries, the correct action is to relink the application with a
more-current version of Oracle Rdb.

Additional information about the Compaq Alpha 21264 (EV6) processor
interlocked memory instructions issues is available at:

http://www.openvms.digital.com/openvms/21264_considerations.html

5.0.16 Oracle RMU Checksum_Verification Qualifier
The Oracle Rdb RMU BACKUP database backup command includes a Checksum_
Verification qualifier.

Specifying Checksum_Verification requests that the RMU Backup command
verify the checksum stored on each database page before it is backed up, thereby
providing end-to-end error detection on the database I/O.

The Checksum_Verification qualifier uses additional CPU resources but can
provide an extra measure of confidence in the quality of the data backed up. Use
of the Checksum_Verification qualifier offers an additional level of data security
and use of the Checksum_Verification qualifier permits Oracle RMU to detect the
possibility that the data it is reading from these disks has only been partially
updated.

Note, however, that if you specify the Nochecksum_Verification qualifier, and
undetected corruptions exist in your database, the corruptions are included in
your backup file and restored when you restore the backup file. Such a corruption
might be difficult to recover from, especially if it is not detected until weeks or
months after the restore operation is performed.

Oracle Corporation recommends that you use the Checksum_Verification qualifier
with all database backup operations because of the improved data integrity this
qualifier provides.

Unfortunately, due to an oversight, for versions of Oracle Rdb prior to Version
8.0, the default for online backups is the Nochecksum_Verification qualifier.
When you do not specify the Checksum_Verification qualifie on all of your RMU
database backup commands.

Known Problems and Restrictions 5–9

5.0.17 Do Not Use HYPERSORT with RMU/OPTIMIZE/AFTER_JOURNAL
(Alpha)

OpenVMS Alpha V7.1 introduced the high-performance Sort/Merge utility (also
known as HYPERSORT). This utility takes advantage of the Alpha architecture
to provide better performance for most sort and merge operations.

The high-performance Sort/Merge utility supports a subset of the SOR routines.
Unfortunately, the high-performance Sort/Merge utility does not support several
of the interfaces used by the RMU/OPTIMIZE/AFTER_JOURNAL command. In
addition, the high-performance Sort/Merge utility reports no error or warning
when being called with the unsupported options used by the RMU/OPTIMIZE
/AFTER_JOURNAL command.

For this reason, the use of the high-performance Sort/Merge utility is not
supported for the RMU/OPTIMIZE/AFTER_JOURNAL command. Do not define
the logical name SORTSHR to reference HYPERSORT.EXE.

5.0.18 Restriction on Using /NOONLINE with Hot Standby
When a user process is performing a read-only transaction on a standby database,
an attempt to start replication on the standby database with the /NOONLINE
qualifier will fail with the following error, and the database will be closed
clusterwide:

%RDMS-F-OPERCLOSE, database operator requested database shutdown

In a previous release, the following error was returned and the process doing the
read-only transaction was not affected:

%RDMS-F-STBYDBINUSE, standby database cannot be exclusively accessed for
replication

As a workaround, if exclusive access is necessary to the standby database,
terminate any user processes before starting replication with the /NOONLINE
qualifier.

This restriction is due to another bug fix and will be lifted in a future release of
Oracle Rdb.

5.0.19 SELECT Query May Bugcheck with
PSII2SCANGETNEXTBBCDUPLICATE Error

Bug 683916

A bugcheck could occur when a ranked B-tree index is used in a query after
a database has been upgraded to Release 7.0.1.3. This is a result of index
corruption that was introduced in previous versions of Oracle Rdb7. This
corruption has been fixed and indexes created using Release 7.0.1.3 will not be
impacted.

As a workaround, delete the affected index and re-create it under Oracle Rdb7
Release 7.0.1.3 or later.

5.0.20 DBAPack for Windows 3.1 is Deprecated
Oracle Enterprise Manager DBAPack will no longer be supported for use on
Windows 3.1.

5–10 Known Problems and Restrictions

5.0.21 Determining Mode for SQL Non-Stored Procedures
Bug 506464.

Although stored procedures allow parameters to be defined with the modes IN,
OUT, and INOUT, there is no similar mechanism provided for SQL module
language or SQL precompiled procedures. However, SQL still associates a mode
with a parameter using the following rules:

Any parameter which is the target of an assignment is considered an OUT
parameter. Assignments consist of the following:

• The parameter is assigned a value with the SET or GET DIAGNOSTICS
statement. For example:

set :p1 = 0;
get diagnostics :p2 = TRANSACTION_ACTIVE;

• The parameter is assigned a value with the INTO clause of an INSERT,
UPDATE, or SELECT statement. For example:

insert into T (col1, col2)
values (...)
returning dbkey into :p1;

update accounts
set account_balance = account_balance + :amount
where account_number = :p1
returning account_balance
into :current_balance;

select last_name
into :p1
from employees
where employee_id = ’00164’;

• The parameter is passed on a CALL statement as an OUT or INOUT
argument. For example:

begin
call GET_CURRENT_BALANCE (:p1);
end;

Any parameter that is the source for a query is considered an IN parameter.
Query references include:

• The parameter appears in the SELECT list, WHERE or HAVING clauses of a
SELECT, or DELETE statement. For example:

select :p1 || last_name, count(*)
from T
where last_name like ’Smith%’
group by last_name
having count(*) > :p2;

delete from T
where posting_date < :p1;

• The parameter appears on the right side of the assignment in a SET
statement or SET clause of an UPDATE statement. For example:

set :p1 = (select avg(salary)
from T
where department = :p2);

update T
set col1 = :p1
where ...;

Known Problems and Restrictions 5–11

• The parameter is used to provide a value to a column in an INSERT
statement. For example:

insert into T (col1, col2)
values (:p1, :p2);

• The parameter is referenced by an expression in a TRACE, CASE, IF/ELSEIF,
WHILE statement, or by the DEFAULT clause of a variable declaration. For
example:

begin
declare :v integer default :p1;
DO_LOOP:
while :p2 > :p1
loop

if :p1 is null then
leave DO_LOOP;

end if;
set :p2 = :p2 + 1;
...;
trace ’Loop at ’, :p2;

end loop;
end;

• The parameter is passed on a CALL statement as an INOUT or IN argument.
For example:

begin
call SET_LINE_SPEED (:p1);
end;

SQL only copies values from the client (application parameters) to the procedure
running in the database server if it is marked as either an IN or INOUT
parameter. SQL only returns values from the server to the client application
parameter variables if the parameter is an OUT or INOUT parameter.

If a parameter is considered an OUT only parameter, then it must be assigned
a value within the procedure, otherwise the result returned to the application
is considered undefined. This could occur if the parameter is used within a
conditional statement such as CASE or IF/ELSEIF. In the following example, the
value returned by :p2 would be undefined if :p1 were negative or zero:

begin
if :p1 > 0 then

set :p2 = (select count(*)
from T
where col1 = :p1);

end if;
end;

It is the responsibility of the application programmer to ensure that the
parameter is correctly assigned values within the procedure. A workaround is to
either explicitly initialize the OUT parameter, or make it an INOUT parameter.
For example:

5–12 Known Problems and Restrictions

begin
if :p1 > 0 then

set :p2 = (select count(*)
from T
where col1 = :p1);

elseif :p2 is null then
begin
end;

end if;
end;

The empty statement will include a reference to the parameter to make it an IN
parameter as well as an OUT parameter.

5.0.22 DROP TABLE CASCADE Results in %RDB-E-NO_META_UPDATE Error
An error could result when a DROP TABLE CASCADE statement is issued. This
occurs when the following conditions apply:

• A table is created with an index defined on the table.

• A storage map is created with a placement via index.

• The storage map is a vertical record partition storage map with two or more
STORE COLUMNS clauses.

The error message given is %RDB-E-NO_META_UPDATE, metadata update
failed.

The following example shows a table, index, and storage map definition followed
by a DROP TABLE CASCADE statement and the resulting error message:

SQL> CREATE TABLE VRP_TABLE (ID INT, ID2 INT);
SQL> COMMIT;
SQL> CREATE UNIQUE INDEX VRP_IDX ON VRP_TABLE (ID)
SQL> STORE IN EMPIDS_LOW;
SQL> COMMIT;
SQL> CREATE STORAGE MAP VRP_MAP
cont> FOR VRP_TABLE
cont> PLACEMENT VIA INDEX VRP_IDX
cont> ENABLE COMPRESSION
cont> STORE COLUMNS (ID)
cont> IN EMPIDS_LOW
cont> STORE COLUMNS (ID2)
cont> IN EMPIDS_MID;
SQL> COMMIT;
SQL>
SQL> DROP TABLE VRP_TABLE CASCADE;
SQL> -- Index VRP_IDX is also being dropped.
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-E-WISH_LIST, feature not implemented yet
-RDMS-E-VRPINVALID, invalid operation for storage map "VRP_MAP"

The workaround to this problem is to first delete the storage map, and then
delete the table using the CASCADE option. The following example shows the
workaround. The SHOW statement indicates that the table, index, and storage
map were deleted:

Known Problems and Restrictions 5–13

SQL> DROP STORAGE MAP VRP_MAP;
SQL> DROP TABLE VRP_TABLE CASCADE;
SQL> -- Index VRP_IDX is also being dropped.
SQL> COMMIT;
SQL> SHOW TABLE VRP_TABLE
No tables found
SQL> SHOW INDEX VRP_IDX
No indexes found
SQL> SHOW STORAGE MAP VRP_MAP
No Storage Maps Found

This problem will be corrected in a future version of Oracle Rdb.

5.0.23 Bugcheck Dump Files with Exceptions at COSI_CHF_SIGNAL
In certain situations, Oracle Rdb bugcheck dump files will indicate an exception
at COSI_CHF_SIGNAL. This location is, however, not the address of the actual
exception. The actual exception occurred at the previous call frame on the stack
(the one listed as the next "Saved PC" after the exception).

For example, consider the following bugcheck file stack information:

$ SEARCH RDSBUGCHK.DMP "EXCEPTION","SAVED PC","-F-","-E-"

***** Exception at 00EFA828 : COSI_CHF_SIGNAL + 00000140
%COSI-F-BUGCHECK, internal consistency failure
Saved PC = 00C386F0 : PSIINDEX2JOINSCR + 00000318
Saved PC = 00C0BE6C : PSII2BALANCE + 0000105C
Saved PC = 00C0F4D4 : PSII2INSERTT + 000005CC
Saved PC = 00C10640 : PSII2INSERTTREE + 000001A0

.

.

.

In this example, the exception actually occurred at PSIINDEX2JOINSCR offset
00000318. If you have a bugcheck dump with an exception at COSI_CHF_
SIGNAL, it is important to note the next ‘‘Saved PC’’ because it will be needed
when working with Oracle Rdb Support Services.

5.0.24 Interruptions Possible when Using Multistatement or Stored Procedures
Long running multistatement or stored procedures can cause other users in the
database to be interrupted by holding resources needed by those other users.
Some resources obtained by the execution of a multistatement or stored procedure
will not be released until the multistatement or stored procedure finishes.
This problem can be encountered even if the statement contains COMMIT or
ROLLBACK statements.

The following example demonstrates the problem. The first session enters an
endless loop; the second session attempts to backup the database, but it is
permanently interrupted:

Session 1

5–14 Known Problems and Restrictions

SQL> ATTACH ’FILE MF_PERSONNEL’;
SQL> CREATE FUNCTION LIB$WAIT (IN REAL BY REFERENCE)
cont> RETURNS INT;
cont> EXTERNAL NAME LIB$WAIT
cont> LOCATION ’SYS$SHARE:LIBRTL.EXE’
cont> LANGUAGE GENERAL
cont> GENERAL PARAMETER STYLE
cont> VARIANT;
SQL> COMMIT;
SQL> EXIT;

$ SQL
SQL> ATTACH ’FILE MF_PERSONNEL’;
SQL> BEGIN
cont> DECLARE :LAST_NAME LAST_NAME_DOM;
cont> DECLARE :WAIT_STATUS INTEGER;
cont> LOOP
cont> SELECT LAST_NAME INTO :LAST_NAME
cont> FROM EMPLOYEES WHERE EMPLOYEE_ID = ’00164’;
cont> ROLLBACK;
cont> SET :WAIT_STATUS = LIB$WAIT (5.0);
cont> SET TRANSACTION READ ONLY;
cont> END LOOP;
cont> END;

Session 2

$ RMU/BACKUP/LOG/ONLINE MF_PERSONNEL MF_PERSONNEL

From a third session we can see that the backup process is waiting for a lock held
in the first session:

$ RMU/SHOW LOCKS /MODE=BLOCKING MF_PERSONNEL
==
SHOW LOCKS/BLOCKING Information
==

--
Resource: nowait signal

ProcessID Process Name Lock ID System ID Requested Granted
--------- --------------- --------- --------- --------- -------

Waiting: 20204383 RMU BACKUP..... 5600A476 00010001 CW NL
Blocker: 2020437B SQL............ 3B00A35C 00010001 PR PR
$

There is no workaround for this restriction. When the multistatement or stored
procedure finishes execution, the resources needed by other processes will be
released.

5.0.25 Row Cache Not Allowed on Standby Database While Hot Standby
Replication Is Active

The row cache feature may not be active on a Hot Standby database while
replication is taking place. The Hot Standby feature will not start if row cache is
active on the standby database.

This restriction exists because rows in the row cache are accessed using logical
dbkeys. However, information transferred to the Hot Standby database from the
after-image journal facility only contains physical dbkeys. Because there is no
way to maintain rows in the cache using the Hot Standby processing, the row
cache must be disabled on the standby database when the standby database is
open and replication is active. The master database is not affected; the row cache
feature and the Hot Standby feature may be used together on a master database.

Known Problems and Restrictions 5–15

The row cache feature should be identically configured on the master and standby
databases in the event failover occurs, but the row cache feature must not be
activated on the standby database until it becomes the master.

A new command qualifier, ROW_CACHE=DISABLED, has been added to the
RMU/OPEN command to disable the row cache feature on the standby database.
To open the Hot Standby database prior to starting replication, use the ROW_
CACHE=DISABLED qualifier on the RMU/OPEN command.

5.0.26 Hot Standby Replication Waits when Starting if Read-Only Transactions
Running

Hot Standby replication will wait to start if there are read-only (snapshot)
transactions running on the standby database. The log roll-forward server (LRS)
will wait until the read-only transactions commit, and then replication will
continue.

This is an existing restriction of the Hot Standby software. This release note is
intended to complement the Hot Standby documentation.

5.0.27 Error when Using the SYS$LIBRARY:SQL_FUNCTIONS70.SQL Oracle
Functions Script

If your programming environment is not set up correctly, you may encounter
problems running the SYS$LIBRARY:SQL_FUNCTIONS70.SQL script used to
set up the Oracle7 functions being supplied with Oracle Rdb.

The following example shows the error:

%RDB-E-EXTFUN_FAIL, external routine failed to compile or execute successfully
-RDMS-E-INVRTNUSE, routine RDB$ORACLE_SQLFUNC_INTRO can not be used, image
"SQL$FUNCTIONS" not activated
-RDMS-I-TEXT, Error activating image
DISK:[DIR]SQL$FUNCTIONS.;, File not found

To resolve this problem, use the @SYS$LIBRARY:RDB$SETVER to set up the
appropriate logical names. This will be necessary for programs that use the
functions as well.

In a standard environment, use the command shown in the following example:

$ @SYS$LIBRARY:RDB$SETVER S

In a multiversion environment, use the command shown in the following example:

$ @SYS$LIBRARY:RDB$SETVER 70

5.0.28 DEC C and Use of the /STANDARD Switch
Bug 394451

The SQL$PRE compiler examines the system to know which dialect of C to
generate. That default can be overwritten by using the /CC=[DECC/VAXC]
switch. The /STANDARD switch should not be used to choose the dialect of C.

Support for DEC C was added to the product with V6.0 and this note is
meant to clarify that support, not to indicate a change. It is possible to use
/STANDARD=RELAXED_ANSI89 or /STANDARD=VAXC correctly, but this is not
recommended.

5–16 Known Problems and Restrictions

The following example shows both the right and wrong way to compile an Oracle
Rdb SQL program. Assume a symbol SQL$PRE has been defined, and DEC C is
the default C compiler on the system:

$ SQL$PRE/CC ! This is correct.
$ SQL$PRE/CC=DECC ! This is correct.
$ SQL$PRE/CC=VAXC ! This is correct.

$ SQL$PRE/CC/STANDARD=VAXC ! This is incorrect.

Notice that the /STANDARD switch has other options in addition to
RELAXED_ANSI89 and VAX C. Those are also not supported.

5.0.29 Excessive Process Page Faults and Other Performance Considerations
During Oracle Rdb Sorts

Excessive hard or soft page faulting can be a limiting factor of process
performance. Sometimes this page faulting occurs during Oracle Rdb sort
operations. This note describes how page faulting can occur and some ways to
help control, or at least understand, it.

One factor contributing to Oracle Rdb process page faulting is sorting operations.
Common causes of sorts include the SQL GROUP BY, ORDER BY, UNION, and
DISTINCT clauses specified for query and index creation operations. Defining the
logical name RDMS$DEBUG_FLAGS to "RS" can help determine when Oracle
Rdb sort operations are occurring and to display the sort keys and statistics.

Oracle Rdb includes its own copy of the OpenVMS SORT32 code within the
Oracle Rdb images and does not generally call the routines in the OpenVMS
run-time library. A copy of the SORT32 code is used to provide stability between
versions of Oracle Rdb and OpenVMS and because Oracle Rdb calls the sort
routines from executive processor mode which is difficult to do using the SORT32
sharable image. Database import and RMU load operations call the OpenVMS
sort run-time library.

At the beginning of a sort operation, the sort code allocates some memory for
working space. The sort code uses this space for buffers, in-memory copies of the
data, and sorting trees.

Sort code does not directly consider the process quotas or parameters when
allocating memory. The effects of WSQUOTA and WSEXTENT are indirect. At
the beginning of each sort operation, the sort code attempts to adjust the process’
working set to the maximum possible size using the $ADJWSL system service
specifying a requested working set limit of %X7FFFFFFF pages (the maximum
possible). Sort code then uses a value of 75% of the returned working set for
virtual memory scratch space. The scratch space is then initialized and the sort
begins.

The initialization of the scratch space generally causes page faults to access
the pages newly added to the working set. Pages that were in the working set
already may be faulted out as new pages are faulted in. Once the sort operation
completes, the pages that may have been faulted out of the working set are likely
to be faulted back into the working set.

When a process’ working set is limited by the working set quota (WSQUOTA)
parameter and the working set extent (WSEXTENT) parameter is a much larger
value, the first call to the sort routines can cause many page faults as the working
set grows. Using a value of WSEXTENT that is closer to WSQUOTA can help
reduce the impact of this case.

Known Problems and Restrictions 5–17

With some OpenVMS versions, AUTOGEN sets the SYSGEN parameter PQL_
MWSEXTENT equal to the WSMAX parameter. This means that all processes
on the system end up with WSEXTENT the same as WSMAX. Because WSMAX
might be quite high, sorting might result in excessive page faulting. You may
want to explicitly set PQL_MWSEXTENT to a lower value if this is the case on
your system.

Sort work files are another factor to consider when tuning Oracle Rdb sort
operations. When the operation cannot be done in available memory, sort code
will use temporary disk files to hold the data as it is being sorted. The Oracle
Rdb Guide to Performance and Tuning contains more detailed information about
sort work files.

The logical name RDMS$BIND_SORT_WORKFILES specifies how many work
files sort code is to use if work files are required. The default is 2, and the
maximum number is 10. The work files can be individually controlled by the
SORTWORKn logical names (where n is from 0 through 9). You can increase the
efficiency of sort operations by assigning the location of the temporary sort work
files to different disks. These assignments are made by using up to 10 logical
names, SORTWORK0 through SORTWORK9.

Normally, sort code places work files in the user’s SYS$SCRATCH directory. By
default, SYS$SCRATCH is the same device and directory as the SYS$LOGIN
location. Spreading the I/O load over many disks improves efficiency as well as
performance by taking advantage of the system resources and helps prevent disk
I/O bottlenecks. Specifying that a user’s work files will reside on separate disks
permits overlap of the sort read/write cycle. You may also encounter cases where
insufficient space exists on the SYS$SCRATCH disk device, such as when Oracle
Rdb builds indexes for a very large table. Using the SORTWORK0 through
SORTWORK9 logical names can help you avoid this problem.

Note that sort code uses the work files for different sorted runs, and then merges
the sorted runs into larger groups. If the source data is mostly sorted, then
not every sort work file may need to be accessed. This is a possible source
of confusion because even with 10 sort work files, it is possible to exceed the
capacity of the first sort file, and the sort operation will fail never having accessed
the remaining 9 sort work files.

Note that the logical names RDMS$BIND_WORK_VM and RDMS$BIND_
WORK_FILE do not affect or control the operation of sort. These logical names
are used to control other temporary space allocations within Oracle Rdb.

5.0.30 Performance Monitor Column Mislabeled
The File IO Overview statistics screen, in the Rdb Performance Monitor, contains
a column labeled Pages Checked. The column should be labeled Pages Discarded
to correctly reflect the statistic displayed.

5.0.31 Restriction Using Backup Files Created Later than Oracle Rdb7
Release 7.0.1

Bug 521583

Backup files created using Oracle Rdb7 releases later than 7.0.1 cannot be
restored using Oracle Rdb7 Release 7.0.1. To fix a problem in a previous release,
some internal backup file data structures were changed. These changes are not
backward compatible with Oracle Rdb7 Release 7.0.1.

5–18 Known Problems and Restrictions

If you restore the database using such a backup file, then any attempt to access
the restored database may result in unpredictable behavior, even though a verify
operation may indicate no problems.

There is no workaround to this problem. For this reason, Oracle Corporation
strongly recommends performing a full and complete backup both before and
after the upgrade from Release 7.0.1 to later releases of Oracle Rdb7.

5.0.32 RMU Backup Operations and Tape Drive Types
When using more than one tape drive for an RMU backup operation, all the tape
drives must be of the same type. For example, all the tape drives must be either
TA90s or TZ87s or TK50s. Using different tape drive types (one TK50 and one
TA90) for a single database backup operation may make database restoration
difficult or impossible.

Oracle RMU attempts to prevent using different tape drive densities during a
backup operation, but is not able to detect all invalid cases and expects that all
tape drives for a backup are of the same type.

As long as all the tapes used during a backup operation can be read by the same
type of tape drive during a restore operation, the backup is likely to be valid.
This may be the case, for example, when using a TA90 and a TA90E.

Oracle recommends that, on a regular basis, you test your backup and recovery
procedures and environment using a test system. You should restore the
databases and then recover them using AIJs to simulate failure recovery of
the production system.

Consult the Oracle Rdb Guide to Database Maintenance, the Oracle Rdb Guide
to Database Design and Definition, and the Oracle RMU Reference Manual for
additional information about Oracle Rdb backup and restore operations.

5.0.33 Use of Oracle Rdb from Shared Images
Bug 470946

If code in the image initialization routine of a shared image makes any calls
into Oracle Rdb, through SQL or any other means, access violations or other
unexpected behavior may occur if Oracle Rdb’s images have not had a chance to
do their own initialization.

To avoid this problem, applications must do one of the following:

• Do not make Oracle Rdb calls from the initialization routines of shared
images.

• Link in such a way that the RDBSHR.EXE image initializes first. This can
be done by placing the reference to RDBSHR.EXE and any other Oracle Rdb
shared images last in the linker options file.

5.0.34 Interactive SQL Command Line Editor Rejects Eight-Bit Characters
Digital UNIX Systems

The interactive SQL command line editor on Digital UNIX can interfere with
entering eight-bit characters from the command line. The command line editor
assumes that a character with the eighth bit set will invoke an editing function.
If the command line editor is enabled and a character with the eighth bit set
is entered from the command line, the character will not be inserted on the
command line. If the character has a corresponding editor function, the function
will be invoked; otherwise, the character is considered invalid and rejected.

Known Problems and Restrictions 5–19

There are two ways to enter eight-bit characters from the SQL command line:
either disable the command line editor or use the command line editor character
quoting function to enter each eight-bit character. To disable the command line
editor, set the configuration parameter RDB_NOLINEDIT in the configuration
file. For example:

! Disable the interactive SQL command line editor.
RDB_NOLINEDIT ON

To place quotation marks around a character using the command line editor, type
Ctrl/V before each character to be place in quotation marks.

5.0.35 Restriction Added for CREATE STORAGE MAP on Table with Data
Oracle Rdb7 added support that allows a storage map to be added to an existing
table which contains data. The restrictions listed for Oracle Rdb7 were:

• The storage map must be a simple map that references only the default
storage area and represents the current (default) mapping for the table. The
default storage area is either RDB$SYSTEM or the area name provided by
the CREATE DATABASE...DEFAULT STORAGE AREA clause.

• The new map cannot change THRESHOLDS or COMPRESSION for the table,
nor can it use the PLACEMENT VIA INDEX clause. It can only contain one
area and cannot be vertically partitioned. This new map simply describes the
mapping as it exists by default for the table.

This release of Rdb7 adds the additional restriction that the storage map may not
include a WITH LIMIT clause for the storage area. The following example shows
the reported error:

SQL> CREATE TABLE MAP_TEST1 (A INTEGER, B CHAR(10));
SQL> CREATE INDEX MAP_TEST1_INDEX ON MAP_TEST1 (A);
SQL> INSERT INTO MAP_TEST1 (A, B) VALUES (3, ’Third’);
1 row inserted
SQL> CREATE STORAGE MAP MAP_TEST1_MAP FOR MAP_TEST1
cont> STORE USING (A) IN RDB$SYSTEM
cont> WITH LIMIT OF (10); -- can’t use WITH LIMIT clause
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-RELNOTEMPTY, table "MAP_TEST1" has data in it
-RDMS-E-NOCMPLXMAP, can not use complex map for non-empty table

5.0.36 ALTER DOMAIN...DROP DEFAULT Reports DEFVALUNS Error
Bug 456867

If a domain has a DEFAULT of CURRENT_USER, SESSION_USER, or
SYSTEM_USER and attempts to delete that default, it may fail unexpectedly.
The following example shows the error:

SQL> ATTACH ’FILENAME PERSONNEL’;
SQL> CREATE DOMAIN ADDRESS_DATA2_DOM CHAR(31)
cont> DEFAULT CURRENT_USER;
SQL> COMMIT;
SQL> ALTER DOMAIN ADDRESS_DATA2_DOM
cont> DROP DEFAULT;
%SQL-F-DEFVALUNS, Default values are not supported for the data type of
ADDRESS_DATA2_DOM

5–20 Known Problems and Restrictions

To work around this problem you must first alter the domain to have a default of
NULL, as shown, and then use DROP DEFAULT:

SQL> ALTER DOMAIN ADDRESS_DATA2_DOM
cont> SET DEFAULT NULL;
SQL> ALTER DOMAIN ADDRESS_DATA2_DOM
cont> DROP DEFAULT;
SQL> COMMIT;

This problem will be corrected in a future release of Oracle Rdb.

5.0.37 Oracle Rdb7 Workload Collection Can Stop Hot Standby Replication
If you are replicating your Oracle Rdb7 database using the Oracle Hot Standby
option, you must not use the workload collection option. By default, workload
collection is disabled. However, if you enabled workload collection, you must
disable it on the master database prior to performing a backup operation on that
master database if it will be used to create the standby database for replication
purposes. If you do not disable workload collection, it could write workload
information to the standby database and prevent replication operations from
occurring.

The workaround included at the end of this section describes how to disable
workload collection on the master database and allow the Hot Standby software
to propagate the change to the standby database automatically during replication
operations.

Background Information
By default, workload collection and cardinality collection are automatically
disabled when Hot Standby replication operations are occurring on the standby
database. However, if replication stops (even for a brief network failure), Oracle
Rdb7 potentially can start a read/write transaction on the standby database to
write workload collection information. Then, because the standby database is
no longer synchronized transactionally with the master database, replication
operations cannot restart.

Note

The Oracle Rdb7 optimizer can update workload collection information in
the RDB$WORKLOAD system table even though the standby database
is opened exclusively for read-only queries. A read/write transaction is
started during the disconnection from the standby database to flush the
workload and cardinality statistics to the system tables.

If the standby database is modified, you receive the following messages when you
try to restart Hot Standby replication operations:

%RDMS-F-DBMODIFIED, database has been modified; AIJ roll-forward not possible
%RMU-F-FATALRDB, Fatal error while accessing Oracle Rdb.

Workaround
To work around this problem, perform the following:

• On the master database, disable workload collection using the SQL clause
WORKLOAD COLLECTION IS DISABLED on the ALTER DATABASE
statement. For example:

SQL> ALTER DATABASE FILE mf_personnel
cont> WORKLOAD COLLECTION IS DISABLED;

Known Problems and Restrictions 5–21

This change is propagated to the standby database automatically when you
restore the standby database and restart replication operations. Note that,
by default, the workload collection feature is disabled. You need to disable
workload collection only if you previously enabled workload collection with
the WORKLOAD COLLECTION IS ENABLED clause.

• On the standby database, include the Transaction_Mode qualifier on the
RMU/Restore command when you restore the standby database. You should
set this qualifier to read-only to prevent modifications to the standby database
when replication operations are not active. The following example shows the
Transaction_Mode qualifier used in a typical RMU/Restore command:

$ RMU/RESTORE /TRANSACTION_MODE=READ_ONLY
/NOCDD
/NOLOG
/ROOT=DISK1:[DIR]standby_personnel.rdb
/AIJ_OPT=aij_opt.dat
DISK1:[DIR]standby_personnel.rbf

If, in the future, you fail over processing to the standby database (so that the
standby database becomes the master database), you can re-enable updates to
the ‘‘new’’ master database. For example, to re-enable updates, use the SQL
statement ALTER DATABASE and include the SET TRANSACTION MODES
(ALL) clause. The following example shows this statement used on the new
master database:

SQL> ALTER DATABASE FILE mf_personnel
cont> SET TRANSACTION MODES (ALL);

5.0.38 RMU Convert Command and System Tables
When the RMU Convert command converts a database from a previous version
to Oracle Rdb V7.0 or higher, it sets the RDB$CREATED and RDB$LAST_
ALTERED columns to the timestamp of the convert operation.

The RDB$xxx_CREATOR columns are set to the current user name (which is
space filled) of the converter. Here xxx represents the object name, such as in
RDB$TRIGGER_CREATOR.

The RMU Convert command also creates the new index on RDB$TRANSFER_
RELATIONS if the database is transfer enabled.

5.0.39 Converting Single-File Databases
Because of a substantial increase in the database root file information for Release
7.0, you should ensure that you have adequate disk space before you use the
RMU Convert command with single-file databases and Release 7.0 or higher.

The size of the database root file of any given database will increase a minimum
of 13 blocks and a maximum of 597 blocks. The actual increase depends mostly
on the maximum number of users specified for the database.

5.0.40 Restriction when Adding Storage Areas with Users Attached to
Database

If you try to interactively add a new storage area where the page size is less than
the existing page size and the database has been manually opened or users are
active, the add operation fails with the following error:

%RDB-F-SYS_REQUEST, error from system services request
-RDMS-F-FILACCERR, error opening database root DKA0:[RDB]TEST.RDB;1
-SYSTEM-W-ACCONFLICT, file access conflict

5–22 Known Problems and Restrictions

You can make this change only when no users are attached to the database and,
if the database is set to OPEN IS MANUAL, the database is closed. Several
internal Oracle Rdb data structures are based on the minimum page size, and
these structures cannot be resized if users are attached to the database.

Furthermore, because this particular change is not recorded in the AIJ file, any
recovery scenario will fail. Note also that if you use .aij files, you must backup
the database and restart after-image journaling because this change invalidates
the current AIJ recovery.

5.0.41 Restriction on Tape Usage for Digital UNIX V3.2
Digital UNIX Systems

You can experience a problem where you are unable to use multiple tapes with
the Oracle RMU Backup command with Digital UNIX V3.2. Every attempt to
recover fails. If this happens and device errors are logged in the system error log,
it is possible that the operation succeeded, but the device open reference count is
zeroed out. This means that any attempt to use the drive by the process holding
the open file descriptor will fail with EINVAL status but another process will be
able to open and use the drive even while the first process has it opened.

There is no workaround for this problem. This problem with the magtape driver
will be corrected in a future release of Digital UNIX.

5.0.42 Support for Single-File Databases to be Dropped in a Future Release
Oracle Rdb currently supports both single-file and multifile databases on both
OpenVMS and Digital UNIX. However, single-file databases will not be supported
in a future release of Oracle Rdb. At that time, Oracle Rdb will provide the
means to easily convert single-file databases to multifile databases.

Oracle recommends that users with single-file databases perform the following
actions:

• Use the Oracle RMU commands, such as Backup and Restore, to make
copies, back up, or move single-file databases. Do not use operating system
commands to copy, back up, or move databases.

• Create new databases as multifile databases even though single-file databases
are supported in Oracle Rdb release 6.1 and release 7.0.

5.0.43 DECdtm Log Stalls
Resource managers using the DECdtm services can sometimes suddenly stop
being able to commit transactions. If Oracle Rdb7 is installed and transactions
are being run, an RMU Show command on the affected database will show
transactions as being "stalled, waiting to commit".

Refer to the DECdtm documentation and release notes for information on
symptoms, fixes, and workarounds for this problem. One workaround, for
OpenVMS V5.5-x, is provided here.

On the affected node while the log stall is in progress, type the following
command from a privileged account:

$ MCR LMCP SET NOTIMEZONE

This should force the log to restart.

Known Problems and Restrictions 5–23

This stall occurs only when a particular bit in a pointer field becomes set. To
see the value of the pointer field, enter the following command from a privileged
account (where <nodename> is the SCS node name of the node in question).

$ MCR LMCP DUMP/ACTIVE/NOFORM SYSTEM$<nodename>

This command displays output similar to the following:

Dump of transaction log SYS$COMMON:[SYSEXE]SYSTEM$<nodename>.LM$JOURNAL;1
End of file block 4002 / Allocated 4002
Log Version 1.0
Transaction log UID: 29551FC0-CBB7-11CC-8001-AA000400B7A5
Penultimate Checkpoint: 000013FD4479 0079
Last Checkpoint: 000013FDFC84 0084

Total of 2 transactions active, 0 prepared and 2 committed.

The stall will occur when bit 31 of the checkpoint address becomes set, as this
excerpt from the previous example shows:

Last Checkpoint: 000013FDFC84 0084
^
|

When the number indicated in the example becomes 8, the log will stall. Check
this number and observe how quickly it grows. When it is at 7FFF, frequently
use the following command:

$ MCR LMCP SHOW LOG /CURRENT

If this command shows a stall in progress, use the workaround to restart the log.

See your Compaq Computer Corporation representative for information about
patches to DECdtm.

5.0.44 Cannot Run Distributed Transactions on Systems with DECnet/OSI and
OpenVMS Alpha Version 6.1 or OpenVMS VAX Version 6.0

If you have DECnet/OSI installed on a system with OpenVMS Alpha Version
6.1 or OpenVMS VAX Version 6.0, you cannot run Oracle Rdb7 operations
that require the two-phase commit protocol. The two-phase commit protocol
guarantees that if one operation in a distributed transaction cannot be completed,
none of the operations is completed.

If you have DECnet/OSI installed on a system running OpenVMS VAX Version
6.1 or higher or OpenVMS Alpha Version 6.2 or higher, you can run Oracle Rdb
operations that require the two-phase commit protocol.

For more information about the two-phase commit protocol, see the Oracle Rdb
Guide to Distributed Transactions.

5.0.45 Multiblock Page Writes May Require Restore Operation
If a node fails while a multiblock page is being written to disk, the page in
the disk becomes inconsistent and is detected immediately during failover.
(Failover is the recovery of an application by restarting it on another computer.)
The problem is rare and occurs because only single-block I/O operations are
guaranteed by OpenVMS to be written atomically. This problem has never been
reported by any customer and was detected only during stress tests in our labs.

Correct the page by an area-level restore operation. Database integrity is
not compromised, but the affected area will not be available until the restore
operation completes.

5–24 Known Problems and Restrictions

A future release of Oracle Rdb will provide a solution that guarantees multiblock
atomic write operations. Cluster failovers will automatically cause the recovery of
multiblock pages, and no manual intervention will be required.

5.0.46 Oracle Rdb7 Network Link Failure Does Not Allow DISCONNECT to
Clean Up Transactions

If a program attaches to a database on a remote node and it loses the connection
before the COMMIT statement is issued, there is nothing you can do except exit
the program and start again.

The problem occurs when a program is connected to a remote database and
updates the database, but then just before it commits, the network fails. When
the commit executes, SQL shows, as it normally should, that the program has
lost the link. Assume that the user waits for a minute or two, then tries the
transaction again. The problem is that when the start transaction is issued for
the second time, it fails because old information still exists about the previous
failed transaction. This occurs even if the user issues a DISCONNECT statement
(in Release 4.1 and earlier, a FINISH statement), which also fails with an
RDB-E-IO_ERROR error message.

5.0.47 Replication Option Copy Processes Do Not Process Database Pages
Ahead of an Application

When a group of copy processes initiated by the Replication Option (formerly
Data Distributor) begins running after an application has begun modifying the
database, the copy processes will catch up to the application and will not be
able to process database pages that are logically ahead of the application in
the RDB$CHANGES system table. The copy processes all align waiting for the
same database page and do not move on until the application has released it.
The performance of each copy process degrades because it is being paced by the
application.

When a copy process completes updates to its respective remote database,
it updates the RDB$TRANSFERS system table and then tries to delete any
RDB$CHANGES rows not needed by any transfers. During this process, the
RDB$CHANGES table cannot be updated by any application process, holding
up any database updates until the deletion process is complete. The application
stalls while waiting for the RDB$CHANGES table. The resulting contention
for RDB$CHANGES SPAM pages and data pages severely impacts performance
throughput, requiring user intervention with normal processing.

This is a known restriction in Release 4.0 and higher. Oracle Rdb uses page
locks as latches. These latches are held only for the duration of an action on
the page and not to the end of transaction. The page locks also have blocking
asynchronous system traps (ASTs) associated with them. Therefore, whenever
a process requests a page lock, the process holding that page lock is sent a
blocking AST (BLAST) by OpenVMS. The process that receives such a blocking
AST queues the fact that the page lock should be released as soon as possible.
However, the page lock cannot be released immediately.

Such work requests to release page locks are handled at verb commit time.
An Oracle Rdb verb is an Oracle Rdb query that executes atomically, within a
transaction. Therefore, verbs that require the scan of a large table, for example,
can be quite long. An updating application does not release page locks until its
verb has completed.

Known Problems and Restrictions 5–25

The reasons for holding on to the page locks until the end of the verb are
fundamental to the database management system.

5.0.48 SQL Does Not Display Storage Map Definition After Cascading Delete
of Storage Area

When you delete a storage area using the CASCADE keyword and that storage
area is not the only area to which the storage map refers, the SHOW STORAGE
MAP statement no longer shows the placement definition for that storage map.

The following example demonstrates this restriction:

SQL> SHOW STORAGE MAP DEGREES_MAP1
DEGREES_MAP1

For Table: DEGREES1
Compression is: ENABLED
Partitioning is: NOT UPDATABLE
Store clause: STORE USING (EMPLOYEE_ID)

IN DEG_AREA WITH LIMIT OF (’00250’)
OTHERWISE IN DEG_AREA2

SQL> DISCONNECT DEFAULT;
SQL> -- Drop the storage area, using the CASCADE keyword.
SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> DROP STORAGE AREA DEG_AREA CASCADE;
SQL> --
SQL> -- Display the storage map definition.
SQL> ATTACH ’FILENAME MF_PERSONNEL’;
SQL> SHOW STORAGE MAP DEGREES_MAP1

DEGREES_MAP1
For Table: DEGREES1
Compression is: ENABLED
Partitioning is: NOT UPDATABLE

SQL>

The other storage area, DEG_AREA2, still exists, even though the SHOW
STORAGE MAP statement does not display it.

A workaround is to use the RMU Extract command with the Items=Storage_Map
qualifier to see the mapping.

5.0.49 ARITH_EXCEPT or Incorrect Results Using LIKE IGNORE CASE
When you use LIKE . . . IGNORE CASE, programs linked under Oracle Rdb
Release 4.2 and Release 5.1, but run under higher versions of Oracle Rdb, may
result in incorrect results or %RDB-E-ARITH_EXCEPT exceptions.

To work around the problem, avoid using IGNORE CASE with LIKE, or recompile
and relink under a higher version (Release 6.0 or higher.)

5.0.50 Different Methods of Limiting Returned Rows from Queries
You can establish the query governor for rows returned from a query by using the
SQL SET QUERY LIMIT statement, a logical name, or a configuration parameter.
This note describes the differences between the mechanisms.

• If you define the RDMS$BIND_QG_REC_LIMIT logical name or RDB_BIND_
QG_REC_LIMIT configuration parameter to a small value, the query will
often fail with no rows returned. The following example demonstrates setting
the limit to 10 rows and the resulting failure:

5–26 Known Problems and Restrictions

$ DEFINE RDMS$BIND_QG_REC_LIMIT 10
$ SQL$
SQL> ATTACH ’FILENAME MF_PERSONNEL’;
SQL> SELECT EMPLOYEE_ID FROM EMPLOYEES;
%RDB-F-EXQUOTA, Oracle Rdb runtime quota exceeded
-RDMS-E-MAXRECLIM, query governor maximum limit of rows has been reached

Interactive SQL must load its metadata cache for the table before it can
process the SELECT statement. In this example, interactive SQL loads
its metadata cache to allow it to check that the column EMPLOYEE_ID
really exists for the table. The queries on the Oracle Rdb system tables
RDB$RELATIONS and RDB$RELATION_FIELDS exceed the limit of rows.

Oracle Rdb does not prepare the SELECT statement, let alone execute it.
Raising the limit to a number less than 100 (the cardinality of EMPLOYEES)
but more than the number of columns in EMPLOYEES (that is, the number
of rows to read from the RDB$RELATION_FIELDS system table) is sufficient
to read each column definition.

To see an indication of the queries executed against the system tables, define
the RDMS$DEBUG_FLAGS logical name or the RDB_DEBUG_FLAGS
configuration parameter as S or B.

• If you set the row limit using the SQL SET QUERY statement and run the
same query, it returns the number of rows specified by the SQL SET QUERY
statement before failing:

SQL> ATTACH ’FILENAME MF_PERSONNEL’;
SQL> SET QUERY LIMIT ROWS 10;
SQL> SELECT EMPLOYEE_ID FROM EMPLOYEES;
EMPLOYEE_ID
00164
00165

.

.

.
00173
%RDB-E-EXQUOTA, Oracle Rdb runtime quota exceeded
-RDMS-E-MAXRECLIM, query governor maximum limit of rows has been reached

The SET QUERY LIMIT specifies that only user queries be limited to 10 rows.
Therefore, the queries used to load the metadata cache are not restricted in
any way.

Like the SET QUERY LIMIT statement, the SQL precompiler and
module processor command line qualifiers (QUERY_MAX_ROWS and
SQLOPTIONS=QUERY_MAX_ROWS) only limit user queries.

Keep the differences in mind when limiting returned rows using the logical name
RDMS$BIND_QG_REC_LIMIT or the configuration parameter RDB_BIND_QG_
REC_LIMIT. They may limit more queries than are obvious. This is important
when using 4GL tools, the SQL precompiler, the SQL module processor, and other
interfaces that read the Oracle Rdb system tables as part of query processing.

5.0.51 Suggestions for Optimal Usage of the SHARED DATA DEFINITION
Clause for Parallel Index Creation

The CREATE INDEX process involves the following steps:

1. Process the metadata.

2. Lock the index name.

Known Problems and Restrictions 5–27

Because new metadata (which includes the index name) is not written to
disk until the end of the index process, Oracle Rdb must ensure index name
uniqueness across the database during this time by taking a special lock on
the provided index name.

3. Read the table for sorting by selected index columns and ordering.

4. Sort the key data.

5. Build the index (includes partitioning across storage areas).

6. Write new metadata to disk.

Step 6 is the point of conflict with other index definers because the system table
and indexes are locked like any other updated table.

Multiple users can create indexes on the same table by using the RESERVING
table_name FOR SHARED DATA DEFINITION clause of the SET
TRANSACTION statement. For optimal usage of this capability, Oracle Rdb
suggests the following guidelines:

• You should commit the transaction immediately after the CREATE INDEX
statement so that locks on the table are released. This avoids lock conflicts
with other index definers and improves overall concurrency.

• By assigning the location of the temporary sort work files SORTWORK0,
SORTWORK1, . . . , SORTWORK9 to different disks for each parallel process
that issues the SHARED DATA DEFINITION statement, you can increase the
efficiency of sort operations. This minimizes any possible disk I/O bottlenecks
and allows overlap of the SORT read/write cycle.

• If possible, enable global buffers and specify a buffer number large enough to
hold a sufficient amount of table data. However, do not define global buffers
larger than the available system physical memory. Global buffers allow
sharing of database pages and thus result in disk I/O savings. That is, pages
are read from disk by one of the processes and then shared by the other index
definers for the same table, reducing the I/O load on the table.

• If global buffers are not used, ensure that enough local buffers exist to keep
much of the index cached (use the RDM$BIND_BUFFERS logical name
or RDB_BIND_BUFFERS configuration parameter or the NUMBER OF
BUFFERS IS clause in SQL to change the number of buffers).

• To distribute the disk I/O load, place the storage areas for the indexes on
separate disk drives. Note that using the same storage area for multiple
indexes will result in contention during the index creation (Step 5) for SPAM
pages.

• Consider placing the .ruj file for each parallel definer on its own disk or an
infrequently used disk.

• Even though snapshot I/O should be minimal, consider disabling snapshots
during parallel index creation.

• Refer to the Oracle Rdb Guide to Performance and Tuning to determine
the appropriate working set values for each process to minimize excessive
paging activity. In particular, avoid using working set parameters where
the difference between WSQUOTA and WSEXTENT is large. The SORT
utility uses the difference between these two values to allocate scratch virtual
memory. A large difference (that is, the requested virtual memory grossly
exceeds the available physical memory) may lead to excessive page faulting.

5–28 Known Problems and Restrictions

• The performance benefits of using SHARED DATA DEFINITION can best
be observed when creating many indexes in parallel. The benefit is in the
average elapsed time, not in CPU or I/O usage. For example, when two
indexes are created in parallel using the SHARED DATA DEFINITION
clause, the database must be attached twice, and the two attaches each use
separate system resources.

• Using the SHARED DATA DEFINITION clause on a single-file database or
for indexes defined in the RDB$SYSTEM storage area is not recommended.

The following table displays the elapsed time benefit when creating multiple
indexes in parallel with the SHARED DATA DEFINITION clause. The
table shows the elapsed time for 10 parallel process index creations (Index1,
Index2, . . . Index10) and one process with 10 sequential index creations (All10).
In this example, global buffers are enabled and the number of buffers is 500.
The longest time for a parallel index creation is Index7 with an elapsed time of
00:02:34.64, compared to creating 10 indexes sequentially with an elapsed time of
00:03:26.66. The longest single parallel create index elapsed time is shorter than
the elapsed time of creating all 10 of the indexes serially.

Index Create Job Elapsed Time

Index1 00:02:22.50

Index2 00:01:57.94

Index3 00:02:06.27

Index4 00:01:34.53

Index5 00:01:51.96

Index6 00:01:27.57

Index7 00:02:34.64

Index8 00:01:40.56

Index9 00:01:34.43

Index10 00:01:47.44

All 10 00:03:26.66

5.0.52 Side Effect when Calling Stored Routines
When calling a stored routine, you must not use the same routine to calculate
argument values by a stored function. For example, if the routine being called
is also called by a stored function during the calculation of an argument value,
passed arguments to the routine may be incorrect.

The following example shows a stored procedure P being called during the
calculation of the arguments for another invocation of the stored procedure P:

Known Problems and Restrictions 5–29

SQL> CREATE MODULE M
cont> LANG SQL
cont>
cont> PROCEDURE P (IN :A INTEGER, IN :B INTEGER, OUT :C INTEGER);
cont> BEGIN
cont> SET :C = :A + :B;
cont> END;
cont>
cont> FUNCTION F () RETURNS INTEGER
cont> COMMENT IS ’expect F to always return 2’;
cont> BEGIN
cont> DECLARE :B INTEGER;
cont> CALL P (1, 1, :B);
cont> TRACE ’RETURNING ’, :B;
cont> RETURN :B;
cont> END;
cont> END MODULE;
SQL>
SQL> SET FLAGS ’TRACE’;
SQL> BEGIN
cont> DECLARE :CC INTEGER;
cont> CALL P (2, F(), :CC);
cont> TRACE ’Expected 4, got ’, :CC;
cont> END;
~Xt: returning 2
~Xt: Expected 4, got 3

The result as shown above is incorrect. The routine argument values are written
to the called routine’s parameter area before complex expression values are
calculated. These calculations may (as in the example) overwrite previously
copied data.

The workaround is to assign the argument expression (in this example calling the
stored function F) to a temporary variable and pass this variable as the input for
the routine. The following example shows the workaround:

SQL> BEGIN
cont> DECLARE :BB, :CC INTEGER;
cont> SET :BB = F();
cont> CALL P (2, :BB, :CC);
cont> TRACE ’Expected 4, got ’, :CC;
cont> END;
~Xt: returning 2
~Xt: Expected 4, got 4

This problem will be corrected in a future version of Oracle Rdb7.

5.0.53 Nested Correlated Subquery Outer References Incorrect
This problem was corrected in Oracle Rdb7 Release 7.0.0.2. An updated release
note stating that this was fixed was inadvertently left out of all the following sets
of release notes. Please note that this issue is now corrected. Outer references
from aggregation subqueries contained within nested queries could receive
incorrect values, causing the overall query to return incorrect results. The
general symptom for an outer query that returned rows 1 to n was that the inner
aggregation query would operate with the nth - 1 row data (usually NULL for row
1) when it should have been using the nth row data.

This problem has existed in various forms for all previous versions of Oracle
Rdb7, but only appears in Release 6.1 and later when the inner of the nested
queries contains an UPDATE statement.

5–30 Known Problems and Restrictions

The following example demonstrates the problem:

SQL> ATTACH ’FILENAME SHIPPING’;
SQL> SELECT * FROM MANIFEST WHERE VOYAGE_NUM = 4904 OR
cont> VOYAGE_NUM = 4909;

VOYAGE_NUM EXP_NUM MATERIAL TONNAGE
4904 311 CEDAR 1200
4904 311 FIR 690
4909 291 IRON ORE 3000
4909 350 BAUXITE 1100
4909 350 COPPER 1200
4909 355 MANGANESE 550
4909 355 TIN 500

7 rows selected

SQL> BEGIN
cont> FOR :A AS EACH ROW OF
cont> SELECT * FROM VOYAGE V WHERE V.SHIP_NAME = ’SANDRA C.’ OR
cont> V.SHIP_NAME = ’DAFFODIL’ DO
cont> FOR :B AS EACH ROW OF TABLE CURSOR MODCUR1 FOR
cont> SELECT * FROM MANIFEST M WHERE M.VOYAGE_NUM = :A.VOYAGE_NUM DO
cont> UPDATE MANIFEST
cont> SET TONNAGE = (SELECT (AVG (M1.EXP_NUM) *3) FROM MANIFEST M1
cont> WHERE M1.VOYAGE_NUM = :A.VOYAGE_NUM)
cont> WHERE CURRENT OF MODCUR1;
cont> END FOR;
cont> END FOR;
cont> END;
SQL> SELECT * FROM MANIFEST WHERE VOYAGE_NUM = 4904 OR
cont> VOYAGE_NUM = 4909;

VOYAGE_NUM EXP_NUM MATERIAL TONNAGE
4904 311 CEDAR NULL
4904 311 FIR NULL
4909 291 IRON ORE 933
4909 350 BAUXITE 933
4909 350 COPPER 933
4909 355 MANGANESE 933
4909 355 TIN 933

7 rows selected

The correct value for TONNAGE on both rows for VOYAGE_NUM 4904 (outer
query row 1) is AVG (311+311)*3=933. However, Oracle Rdb7 calculates it as AVG
(NULL+NULL)*3=NULL. In addition, the TONNAGE value for VOYAGE_NUM
4909 (outer query row 2) is actually the TONNAGE value for outer query row 1.

A workaround is to declare a variable of the same type as the outer reference
data item, assign the outer reference data into the variable before the inner query
that contains the correlated aggregation subquery, and reference the variable
in the aggregation subquery. Keep in mind the restriction on the use of local
variables in FOR cursor loops.

For example:

Known Problems and Restrictions 5–31

SQL> DECLARE :VN INTEGER;
SQL> BEGIN
cont> FOR :A AS EACH ROW OF
cont> SELECT * FROM VOYAGE V WHERE V.SHIP_NAME = ’SANDRA C.’ DO
cont> SET :VN = :A.VOYAGE_NUM;
cont> FOR :B AS EACH ROW OF TABLE CURSOR MODCUR1 FOR
cont> SELECT * FROM MANIFEST M WHERE M.VOYAGE_NUM = :A.VOYAGE_NUM DO
cont> UPDATE MANIFEST
cont> SET TONNAGE = (SELECT (AVG (M1.EXP_NUM) *3) FROM MANIFEST M1
cont> WHERE M1.VOYAGE_NUM = :VN)
cont> WHERE CURRENT OF MODCUR1;
cont> END FOR;
cont> END FOR;
cont> END;
SQL> SELECT * FROM MANIFEST WHERE VOYAGE_NUM = 4904;

VOYAGE_NUM EXP_NUM MATERIAL TONNAGE
4904 311 CEDAR 933
4904 311 FIR 933

This problem was corrected in Oracle Rdb7 Release 7.0.0.2. An updated release
note stating that this was fixed was inadvertently left out of all the following sets
of release notes. Please note that this issue is now corrected.

5.0.54 Considerations when Using Holdable Cursors
If your applications use holdable cursors, be aware that after a COMMIT or
ROLLBACK statement is executed, the result set selected by the cursor may
not remain stable. That is, rows may be inserted, updated, and deleted by other
users because no locks are held on the rows selected by the holdable cursor after
a commit or rollback occurs. Moreover, depending on the access strategy, rows not
yet fetched may change before Oracle Rdb actually fetches them.

As a result, you may see the following anomalies when using holdable cursors in
a concurrent user environment:

• If the access strategy forces Oracle Rdb to take a data snapshot, the data
read and cached may be inaccurate by the time the cursor fetches the data.

For example, user 1 opens a cursor and commits the transaction. User
2 deletes rows read by user 1 (this is possible because the read locks are
released). It is possible for user 1 to report data now deleted and committed.

• If the access strategy uses indexes that allow duplicates, updates to the
duplicates chain may cause rows to be skipped, or even revisited.

Oracle Rdb keeps track of the dbkey in the duplicate chain pointing to the
data that was fetched. However, the duplicates chain could be revised by the
time Oracle Rdb returns to using it.

Holdable cursors are a very powerful feature for read-only or predominantly read-
only environments. However, in concurrent update environments, the instability
of the cursor may not be acceptable. The stability of holdable cursors for update
environments will be addressed in future versions of Oracle Rdb.

You can define the logical name RDMS$BIND_HOLD_CURSOR_SNAP or
configuration parameter RDB_BIND_HOLD_CURSOR_SNAP to the value 1 to
force all hold cursors to fetch the result set into a cached data area. (The cached
data area appears as a ‘‘Temporary Relation’’ in the optimizer strategy displayed
by the SET FLAGS STRATEGY statement or the RDMS$DEBUG_FLAGS S flag.)
This logical name or configuration parameter helps to stabilize the cursor to some
degree.

5–32 Known Problems and Restrictions

5.0.55 INCLUDE SQLDA2 Statement Is Not Supported for SQL Precompiler for
PL/I in Oracle Rdb Release 5.0 or Higher

The SQL statement INCLUDE SQLDA2 is not supported for use with the PL/I
precompiler in Oracle Rdb Release 5.0 or higher.

There is no workaround. This problem will be fixed in a future version of Oracle
Rdb.

5.0.56 SQL Pascal Precompiler Processes ARRAY OF RECORD Declarations
Incorrectly

The Pascal precompiler for SQL gives an incorrect %SQL-I-UNMATEND error
when it parses a declaration of an array of records. The precompiler does not
associate the END statement with the record definition, and the resulting
confusion in host variable scoping causes a fatal error.

A workaround for the problem is to declare the record as a type and then define
your array of that type. For example:

main.spa:

program main (input,output);

type
exec sql include ’bad_def.pin’; !gives error
exec sql include ’good_def.pin’; !ok
var

a : char;

begin
end.

bad_def.pin

x_record = record
y : char;
variable_a: array [1..50] of record

a_fld1 : char;
b_fld2 : record;

t : record
v : integer;

end;
end;

end;
end;

good_def.pin

good_rec = record
a_fld1 : char;
b_fld2 : record

t : record
v: integer;

end;
end;

end;

x_record = record
y : char
variable_a : array [1..50] of good_rec;

end;

Known Problems and Restrictions 5–33

5.0.57 RMU Parallel Backup Command Not Supported for Use with SLS
The RMU Parallel Backup command is not supported for use with the Storage
Library System (SLS) for OpenVMS.

5.0.58 Oracle RMU Commands Pause During Tape Rewind
Digital UNIX Systems

For Oracle Rdb Release 6.1 or higher on Digital UNIX, the Oracle RMU Backup
and Restore commands pause under certain conditions.

If multiple tape drives are used for RMU Backup or RMU Restore commands
and a tape needs to rewind, the Oracle RMU command pauses until the rewind
is complete. This is different from behavior on OpenVMS systems where the
command continues to write to tape drives that are not rewinding.

There is no workaround for this problem.

5.0.59 TA90 and TA92 Tape Drives Are Not Supported on Digital UNIX
Digital UNIX Systems

When rewinding or unloading tapes using either TA90 and TA92 drives, Digital
UNIX intermittently returns an EIO error causing the Oracle RMU operation
to abort. This problem occurs most often when Oracle RMU accesses multiple
tape drives in parallel. However, the problem occurs even with single-tape drive
access.

As a result of this problem, Oracle Rdb on Digital UNIX supports neither TA90
nor TA92 tape drives.

5.1 Oracle CDD/Repository Restrictions
This section describes known problems and restrictions in Oracle CDD/Repository
Release 7.0 and earlier.

5.1.1 Oracle CDD/Repository Compatibility with Oracle Rdb Features
Some Oracle Rdb features are not fully supported by all versions of Oracle
CDD/Repository. Table 5–1 shows which versions of Oracle CDD/Repository
support Oracle Rdb features and the extent of support.

In Table 5–1, repository support for Oracle Rdb7 features can vary as follows:

• Explicit support—The repository recognizes and integrates the feature, and
you can use the repository to manipulate the item.

• Implicit support—The repository recognizes and integrates the feature, but
you cannot use any repository interface to manipulate the item.

• Pass-through support—The repository does not recognize or integrate the
feature, but allows the Oracle Rdb7 operation to complete without aborting or
overwriting metadata. With pass-through support, a CDD-I-MBLRSYNINFO
informational message may be returned.

5–34 Known Problems and Restrictions

Table 5–1 Oracle CDD/Repository Compatibility for Oracle Rdb Features

Oracle Rdb Feature
Minimum Release
of Oracle Rdb

Minimum Release of
Oracle CDD/Repository Support

CASE, NULLIF, and
COALESCE expressions

6.0 6.1 Implicit

CAST function 4.1 7.0 Explicit

Character data types to support
character sets

4.2 6.1 Implicit

Collating sequences 3.1 6.1 Explicit

Constraints (PRIMARY KEY,
UNIQUE, NOT NULL, CHECK,
FOREIGN KEY)

3.1 5.2 Explicit

CURRENT_DATE, CURRENT_
TIME, and CURRENT_
TIMESTAMP functions

4.1 7.0 Explicit

CURRENT_USER, SESSION_
USER, SYSTEM_USER
functions

6.0 7.0 Explict

Date arithmetic 4.1 6.1 Pass-through

DATE ANSI, TIME,
TIMESTAMP, and INTERVAL
data types

4.1 6.1 Explicit

Delimited identifiers 4.2 6.11 Explicit

External functions 6.0 6.1 Pass-through

External procedures 7.0 6.1 Pass-through

EXTRACT, CHAR_LENGTH,
and OCTET_LENGTH functions

4.1 6.1 Explicit

GRANT/REVOKE privileges 4.0 5.0 accepts but does not
store information

Pass-through

Indexes 1.0 5.2 Explicit

INTEGRATE DOMAIN 6.1 6.1 Explicit

INTEGRATE TABLE 6.1 6.1 Explicit

Logical area thresholds for
storage maps and indexes

4.1 5.2 Pass-through

Multinational character set 3.1 4.0 Explicit

Multiversion environment
(multiple Rdb versions)

4.1 5.1 Explicit

NULL keyword 2.2 7.0 Explicit

Oracle7 compatibility functions,
such as CONCAT, CONVERT,
DECODE, and SYSDATE

7.0 7.0 Explicit

Outer joins, derived tables 6.0 7.0 Pass-through

Query outlines 6.0 6.1 Pass-through

Storage map definitions correctly
restored

3.0 5.1 Explicit

1The repository does not preserve the distinction between uppercase and lowercase identifiers. If you
use delimited identifiers with Oracle Rdb, the repository ensures that the record definition does not
include objects with names that are duplicates except for case.

(continued on next page)

Known Problems and Restrictions 5–35

Table 5–1 (Cont.) Oracle CDD/Repository Compatibility for Oracle Rdb Features

Oracle Rdb Feature
Minimum Release
of Oracle Rdb

Minimum Release of
Oracle CDD/Repository Support

Stored functions 7.0 6.1 Pass-through

Stored procedures 6.0 6.1 Pass-through

SUBSTRING function 4.0 7.0 supports all features
5.0 supports all but 4.2
MIA features 2

Explicit

Temporary tables 7.0 6.1 Pass-through

Triggers 3.1 5.2 Pass-through

TRUNCATE TABLE 7.0 6.1 Pass-through

TRIM and POSITION functions 6.1 7.0 Explicit

UPPER, LOWER, TRANSLATE
functions

4.2 7.0 Explicit

USER function 2.2 7.0 Explict

2Multivendor Integration Architecture (MIA) features include the CHAR_LENGTH clause and the
TRANSLATE function.

5.1.2 Multischema Databases and CDD/Repository
You cannot use multischema databases with CDD/Repository and Oracle Rdb
release 7.0 and earlier. This problem will be corrected in a future release of
Oracle Rdb.

5.1.3 Interaction of Oracle CDD/Repository Release 5.1 and Oracle RMU
Privileges Access Control Lists

Oracle Rdb provides special Oracle RMU privileges that use the unused portion
of the OpenVMS access control list (ACL) to manage access to Oracle RMU
operations.

You can use the RMU Set Privilege and RMU Show Privilege commands
to set and show the Oracle RMU privileges. The DCL SHOW ACL and
DIRECTORY/ACL commands also show the added access control information;
however, these tools cannot translate the names defined by Oracle Rdb.

Note

The RMU Convert command propagates the database internal ACL to the
root file for access control entries (ACEs) that possess the SECURITY and
DBADM (ADMINISTRATOR) privileges.

Oracle CDD/Repository protects its repository (dictionary) by placing the
CDD$SYSTEM rights identifier on each file created within the anchor directory.
CDD$SYSTEM is a special, reserved rights identifier created by Oracle
CDD/Repository.

When Oracle CDD/Repository executes the DEFINE REPOSITORY command, it
adds (or augments) an OpenVMS default ACL to the anchor directory. Typically,
this ACL allows access to the repository files for CDD$SYSTEM and denies access
to everyone else. All files created in the anchor directory inherit this default ACL,
including the repository database.

5–36 Known Problems and Restrictions

Unfortunately, there is an interaction between the default ACL placed on the
repository database by Oracle CDD/Repository and the Oracle RMU privileges
ACL processing.

Within the ACL on the repository database, the default access control entries
(ACEs) that were inherited from the anchor directory will precede the ACEs
added by RMU Restore. As a result, the CDD$SYSTEM identifier will not have
any Oracle RMU privileges granted to it. Without these privileges, if the user
does not have the OpenVMS SYSPRV privilege enabled, Oracle RMU operations,
such as Convert and Restore, will not be allowed on the repository database.

The following problems may be observed by users who do not have the SYSPRV
privilege enabled:

• While executing a CDO DEFINE REPOSITORY or DEFINE DICTIONARY
command:

If the CDD$TEMPLATEDB backup (.rbf) file was created by a previous
version of Oracle Rdb7, the automatic RMU Convert operation that will be
carried out on the .rbf file will fail because SYSPRV privilege is required.

If the CDD$TEMPLATEDB backup (.rbf) file was created by the current
version of Oracle Rdb7, the restore of the repository database will fail
because the default ACEs that already existed on the repository file that
was backed up will take precedence, preventing RMU$CONVERT and
RMU$RESTORE privileges from being granted to CDD$SYSTEM or the
user.

If no CDD$TEMPLATEDB is available, the repository database will be
created without a template, inheriting the default ACL from the parent
directory. The ACE containing all the required Oracle RMU privileges
will be added to the end of the ACL; however, the preexisting default
ACEs will prevent any Oracle RMU privilege from being granted.

• You must use the RMU Convert command to upgrade the database disk
format to Oracle Rdb7 after installing Release 7.0. This operation requires
the SYSPRV privilege.

During the conversion, RMU Convert adds the ACE containing the Oracle
RMU privileges at the end of the ACL. Because the repository database
already has the default Oracle CDD/Repository ACL associated with it, the
Oracle CDD/Repository ACL will take precedence, preventing the granting of
the Oracle RMU privileges.

• During a CDO MOVE REPOSITORY command, the Oracle RMU privilege
checking may prevent the move, as the RMU$COPY privilege has not been
granted on the repository database.

• When you execute the CDD template builder CDD_BUILD_TEMPLATE, the
step involving RMU Backup privilege has not been granted.

Oracle CDD/Repository Releases 5.2 and higher correct this problem. A version
of the Oracle CDD/Repository software that corrects this problem and allows new
repositories to be created using Oracle Rdb7 is provided on the Oracle Rdb7 kit
for use on OpenVMS VAX systems. See Section 5.1.3.1 for details.

Known Problems and Restrictions 5–37

5.1.3.1 Installing the Corrected CDDSHR Images
OpenVMS VAX Systems

Note

The following procedure must be carried out if you have installed or plan
to install Oracle Rdb7 and have already installed CDD/Repository Release
5.1 software on your system.

Due to the enhanced security checking associated with Oracle RMU commands
in Oracle Rdb on OpenVMS VAX, existing CDDSHR images for CDD/Repository
Release 5.1 must be upgraded to ensure that the correct Oracle RMU privileges
are applied to newly created or copied repository databases.

Included in the Oracle Rdb7 for OpenVMS VAX distribution kit is a CDD
upgraded image kit, called CDDRDB042, that must be installed after you have
installed the Oracle Rdb7 for OpenVMS VAX kit.

This upgrade kit should be installed by using VMSINSTAL. It automatically
checks which version of CDDSHR you have installed and replaces the existing
CDDSHR.EXE with the corrected image file. The existing CDDSHR.EXE will be
renamed SYS$LIBRARY:OLD_CDDSHR.EXE.

The upgrade installation will also place a new CDD_BUILD_TEMPLATE.COM
procedure in SYS$LIBRARY for use with CDD/Repository V5.1.

Note

If you upgrade your repository to CDD/Repository V5.1 after you install
Oracle Rdb7 V7.0, you must install the corrected CDDSHR image again
to ensure that the correct CDDSHR images have been made available.

The CDD/Repository upgrade kit determines which version of
CDD/Repository is installed and replaces the existing CDDSHR.EXE
with the appropriate version of the corrected image.

5.1.3.2 CDD Conversion Procedure
OpenVMS VAX Systems

Oracle Rdb7 provides RDB$CONVERT_CDD$DATABASE.COM, a command
procedure that both corrects the anchor directory ACL and performs the RMU
Convert operation. The command procedure is located in SYS$LIBRARY.

Note

You must have SYSPRV enabled before you execute the procedure
RDB$CONVERT_CDD$DATABASE.COM because the procedure performs
an RMU Convert operation.

Use the procedure RDB$CONVERT_CDD$DATABASE.COM to process the
anchor directory and update the ACLs for both the directory and, if available, the
repository database.

5–38 Known Problems and Restrictions

This procedure accepts one parameter: the name of the anchor directory that
contains, or will contain, the repository files. For example:

$ @SYS$LIBRARY:DECRDB$CONVERT_CDD$DATABASE [PROJECT.CDD_REP]

If many repositories exist on a system, you may want to create a DCL command
procedure to locate them, set the Oracle RMU privileges ACL, and convert the
databases. Use DCL commands similar to the following:

$ LOOP:
$ REP_SPEC = F$SEARCH("[000000...]CDD$DATABASE.RDB")
$ IF REP_SPEC .NES. ""
$ THEN
$ @SYS$LIBRARY:DECRDB$CONVERT_CDD$DATABASE -

’F$PARSE(REP_SPEC,,,"DIRECTORY")’
$ GOTO LOOP
$ ENDIF

Known Problems and Restrictions 5–39

6
Enhancements

This chapter describes the enhancements that are introduced in Oracle Rdb7
Release 7.0.5.

6.1 Enhancements Provided in Oracle Rdb7 Release 7.0.5
6.1.1 SHOW STATISTIC "Checkpoint Analysis" Screen

The RMU Show Statistic Utility ‘‘Online Analysis’’ facility has been enhanced.
The ‘‘Checkpoint Analysis’’ screen performs basic review and analysis of the
database checkpoint and process recovery information. The purpose of this screen
is to identify processes whose recovery may impact database throughput or
availability.

The ‘‘Checkpoint Analysis’’ screen is available even when the ‘‘AIJ Fast Commit’’
feature is not enabled. However, some of the analysis may not be performed in
this case.

The following is an example of the ‘‘Checkpoint Analysis’’ screen display:

Node: ALPHA3 (1/1/1) Oracle Rdb X7.1-00 Perf. Monitor 13-JAN-2000 08:05:49.34
Rate: 1.00 Second Checkpoint Analysis Elapsed: 5 21:17:06.33
Page: 1 of 1 KODA_TEST:[R_ANDERSON.TCS_MASTER]TCS.RDB;1 Mode: Global
--

Process 3C82F330:1 checkpoint 15:2 lags behind current AIJ sequence 18
Process 3C82F330:1 checkpoint 15:2 exceeds 512 block threshold
Process 3C82F330:1 process recovery duration 123 seconds exceeds 10 threshold
Process 3C82F330:1 database freeze duration 123 seconds exceeds 15 threshold
Process 3C82E731:1 checkpoint 17:6586 lags behind current AIJ sequence 18
Process 3C82E731:1 checkpoint 17:6586 exceeds 512 block threshold
Process 3C82E731:1 database freeze duration 6 seconds exceeds 15 threshold
Process 3C82FD33:35 checkpoint 18:2216 exceeds 512 block threshold
Process 3C827752:1 checkpoint 18:2217 exceeds 512 block threshold
Process 3C82DF55:1 checkpoint 18:2142 exceeds 512 block threshold
Process 3C830948:1 checkpoint 18:2218 exceeds 512 block threshold

--
Config Exit Help Menu Set_rate Write !

The ‘‘Checkpoint Analysis’’ screen performs the following analysis operations:

• Checkpoint Stale. This analysis determines whether or not the process
checkpoint occurs within the current AIJ journal, which is always desireable.

This analysis results in the following message being displayed:

Process 3C82F330:1 checkpoint 15:2 lags behind current AIJ sequence 18

• Checkpoint Old. This analysis determines whether or not the checkpoint
size exceeds a user-specified threshold, expressed in AIJ blocks. The number
of AIJ blocks constitutes a physical process recovery duration, but also
impacts other components, such as AIJ backup and Row Cache.

Enhancements 6–1

The default checkpoint block count threshold is 512 blocks. The default
threshold can be modified in the following manner:

• The logical RDM$BIND_STATS_CHECKPOINT_BLOCK_COUNT can be
defined to specify a different threshold at utility startup.

• The configuration variable CHECKPOINT_BLOCK_COUNT can be
defined to specify a different threshold in the configuration file.

• The threshold can be modified at run-time using the ‘‘Config’’ on-screen
menu option, by selecting the ‘‘Checkpoint block count’’ option.

This analysis results in the following message being displayed:

Process 3C82F330:1 checkpoint 15:2 exceeds 512 block threshold

• RUJ File Size. This analysis determines whether or not the process RUJ file
size exceeds a user-specified threshold, expressed in blocks. The number of
RUJ blocks constitutes a transaction recovery duration.

The default RUJ file size threshold is 256 blocks. The default threshold can
be modified in the following manner:

• The logical RDM$BIND_STATS_RUJ_FILE_SIZE can be defined to
specify a different threshold at utility startup.

• The configuration variable RUJ_FILE_SIZE can be defined to specify a
different threshold in the configuration file.

• The threshold can be modified at run-time using the ‘‘Config’’ on-screen
menu option, by selecting the ‘‘RUJ file size’’ option.

This analysis results in the following message being displayed:

Process 3C82C943:1 RUJ size 30 block exceeds 25 block threshold

• Transaction Rollback Duration. This analysis determines whether or not
the transaction rollback duration exceeds a user-defined threshold, expressed
in seconds.

The default transaction rollback threshold is 5 seconds. The default threshold
can be modified in the following manner:

• The logical RDM$BIND_TX_UNDO_DURATION can be defined to specify
a different threshold at utility startup.

• The configuration variable TX_UNDO_DURATION can be defined to
specify a different threshold in the configuration file.

• The threshold can be modified at run-time using the ‘‘Config’’ on-screen
menu option, by selecting the ‘‘Transaction rollback duration’’ option.

This analysis results in the following message being displayed:

Process 3C82F330:1 Transaction rollback duration 13 seconds exceeds 10 second
threshold

• Process Recovery Duration. This analysis determines whether or not
the recovery of a process failure (transaction REDO) exceeds a user-defined
threshold, expressed in seconds.

The default process recovery threshold is 10 seconds. The default threshold
can be modified in the following manner:

• The logical RDM$BIND_TX_REDO_DURATION can be defined to specify
a different threshold at utility startup.

6–2 Enhancements

• The configuration variable TX_REDO_DURATION can be defined to
specify a different threshold in the configuration file.

• The threshold can be modified at run-time using the ‘‘Config’’ on-screen
menu option, by selecting the ‘‘Process recovery duration’’ option.

This analysis results in the following message being displayed:

Process 3C82F330:1 process recovery duration 123 seconds exceeds 10 second
threshold

• Database freeze duration. This analysis determines whether or not the
entire database freeze duration exceeds a user-defined threshold, expressed
in seconds. The database freeze duration includes both transaction rollback,
process recovery (transaction REDO) and DBR processing.

The default database freeze threshold is 15 seconds. The default threshold
can be modified in the following manner:

• The logical RDM$BIND_DBR_FREEZE_DURATION can be defined to
specify a different threshold at utility startup.

• The configuration variable TX_DBR_FREEZE_DURATION can be defined
to specify a different threshold in the configuration file.

• The threshold can be modified at run-time using the ‘‘Config’’ on-screen
menu option, by selecting the ‘‘Database freeze duration’’ option.

This analysis results in the following message being displayed:

Process 3C82F330:1 Database freeze duration 123 seconds exceeds 5 second
threshold

The ‘‘Checkpoint Analysis’’ screen information displays run-time information and
is not recorded in the binary output file. Consequently, the screen is also not
available during replay of a binary input file.

The information displayed represents information for the current node only, even
when cluster-wide statistics collection is enabled.

6.1.2 RMU Show Statistic "Online Analysis Logfile" Facility
The RMU Show Statistic utility has been enhanced to provide an ‘‘Online
Analysis’’ log file. The online analysis log file provides hard copy of all of the
analysis performed by all of the ‘‘Online Analysis’’ facility screens, without having
to actually display any of the screens.

The ‘‘Online Analysis’’ log file is enabled using two different methods:

1. The configuration variable ONLINE_ANALYSIS_LOG identifies the name of
the log file to contain the online analysis information.

2. At run-time, the online analysis log file can be started and stopped using the
Tools menu, obtained via the ‘‘!’’ shortcut. Selecting the ‘‘Start online analysis
logging’’ option will create the log file, and selecting the ‘‘Stop online analysis
logging’’ will terminate the log file.

Note

There is no command qualifier to directly enable the online analysis
log file; the configuration file should be used instead via the /CONFIG
command qualifier.

Enhancements 6–3

The following shows an example of the online analysis log file contents:

Oracle Rdb X7.1-00 Performance Monitor Online Analysis Log
Database KODA_TEST:[R_ANDERSON.TCS_MASTER]TCS.RDB;1
Online Analysis Log created 15-JAN-2000 07:36:26.69

07:36:34.56 95th %ile transaction duration: 34.4 seconds
07:36:34.56 95th %ile read/write transaction duration: 31.9 seconds
07:36:34.56 95th %ile read-only transaction duration: 503.9 seconds
07:36:34.56 Log server is Automatic
07:36:34.56 AIJ TCS1 device DPA48: same as storage area
07:36:34.56 AIJ TCS2 device DPA48: same as storage area
07:36:34.56 AIJ TCS3 device DPA48: same as storage area
07:36:34.56 AIJ TCS4 device DPA48: same as storage area
07:36:34.56 AIJ TCS5 device DPA48: same as storage area
07:36:34.56 ARB pool exhausted 56 times
07:36:34.56 12.2% synchronous RUJ I/O above 10.0% threshold
07:36:34.56 9.5% RUJ extends above 2.0% threshold
07:36:34.56 Process 3C830F2A:1 checkpoint 11:1075 exceeds 512 block threshold
07:36:34.56 Process 3C830F2A:1 process recovery duration 14 seconds exceeds 10

second threshold
07:36:34.56 Process 3C83112B:1 checkpoint 10:4911 lags behind current AIJ

sequence 11
07:36:34.56 Process 3C83112B:1 checkpoint 10:4911 exceeds 512 block threshold
07:36:34.56 Process 3C83112B:1 process recovery duration 21 seconds exceeds 10

second threshold
07:36:34.56 Process 3C83112B:1 database freeze duration 21 seconds exceeds 15

second threshold
07:36:34.56 Process 3C831732:31 checkpoint 11:14290 exceeds 512 block threshold
07:36:34.56 Process 3C831D3C:1 checkpoint 11:14213 exceeds 512 block threshold
07:36:34.56 92617.6 process recovery duration above 2.0 second threshold
07:36:34.56 Full database backup has not been performed since 7-JAN-2000

13:46:55.60
07:36:34.56 17.7% page discard rate above 10.0% threshold (avg 0.1 I/Os)
07:36:34.56 100.0% SPAM page fetch rate above 80.0% total fetched threshold
07:36:34.56 217.6% SPAM page fetch rate above 20.0% record stored threshold
07:36:34.56 data TCS extended 1 time total 0 times
07:36:34.56 data TCS async write I/O stalls 1.2 exceeded average 0.3
07:36:34.56 data TCS sync write I/O stalls 15.7 exceeded average 3.0
07:36:42.49 Process 3C82DD5C:1 excessive deadlocks 12 on waiting for page

10:2757 (PR)
07:36:42.49 258.8% duplicate btree fetch above 15.0% threshold
07:36:42.49 51.0% duplicate btree store above 15.0% threshold
07:36:42.49 34.6% duplicate hash btree fetch above 15.0% threshold
07:36:42.49 34.4% duplicate hash index store above 15.0% threshold
07:36:42.49 Row cache is not allowed

The online analysis is performed at the specified screen refresh rate. It is
possible to generate a considerable number of entries in the online analysis log
file. Therefore, it is recommended that the online analysis log file be used in
a non-interactive batch job with a reasonable refresh rate of five, ten or thirty
seconds.

6.1.3 New OPTIMIZE Clause DML Statements
Oracle Rdb7 Release 7.0.5 adds a new OPTIMIZE FOR SEQUENTIAL ACCESS
clause to SELECT, DELETE and UPDATE statements which want to force the
use of sequential access. This is particularly valuable for tables which use the
strict partitioning functionality.

When a table’s storage map has the attribute PARTITIONING IS NOT
UPDATABLE, the mapping of data to a storage area is strictly enforced. This
is known as strict partitioning. When queries on such tables use sequential
access, the optimizer can eliminate partitions which do not match the query
WHERE restriction rather than scan every partition.

6–4 Enhancements

The following example shows a query that deletes selected rows from a specific
partition. This table also includes several indices which may be chosen by the
optimizer. This new OPTIMIZE clause forces sequential access. In previous
releases, a query outline would have to be created for this query. This new clause
effectively creates this query outline on-the-fly.

SQL> delete from PARTS_LOG
cont> where parts_id between 10000 and 20000
cont> and expiry_date < :purge_date
cont> optimize for sequential access ;

Please note that all access performed by such queries will be sequential access.
Care should be taken that the I/O being used is acceptable by comparing similar
queries using index access.

6.1.4 New RMU /RECLAIM Command
Applications that specify the database attach attribute DBKEY SCOPE IS
ATTACH can accumulate locked space and locked DBKEYs within the database.
If one user is connected to the database in DBKEY SCOPE IS ATTACH mode, all
users are forced to operate in this mode, even if they are are explicitly connected
in TRANSACTION mode. That is, no one reuses dbkeys until the ATTACH
session disconnects.

A new RMU /RECLAIM command has been added to allow database keys of
deleted rows to be rapidly "cleaned up" in one or more storage areas. The RMU
/RECLAIM command reads and updates all pages in a storage area. Where
possible, locked lines and locked free space are ‘‘released’’ so that they will be
available for later allocation.

The RMU /RECLAIM command runs on-line (does not require exclusive access).
However, if there are any users connected to the database in DBKEY SCOPE IS
ATTACH mode, the RMU /RECLAIM operation will have greatly reduced effect.
In order to release all possible locked space, there should be no users attached to
the database in DBKEY SCOPE IS ATTACH mode. Further, to allow database
page locked space to be reclaimed, the database session that ‘‘owns’’ the locked
space must be detached from the database. This can be accomplished by having
each database attach disconnect and reconnect to the database.

Valid qualifiers for the ‘‘RMU /RECLAIM’’ command are:

• /AREA=(listofareas) to indicate the storage areas to be reclaimed. The default
is to reclaim all storage areas.

• /LOG to display a log message at the completion of each storage area.

6.1.5 New RMU /SERVER RECORD_CACHE CHECKPOINT Command
A new ‘‘RMU /SERVER RECORD_CACHE CHECKPOINT’’ command has
been added to allow a DBA to force the Record Cache Server (RCS) process to
checkpoint all modified rows from cache back to the database. This command also
accepts the optional qualifiers ‘‘/LOG’’ and ‘‘ /WAIT’’.

6.1.6 RCS Cycles TID Value at Checkpoint Completion
When the Oracle Rdb7 Row Cache feature is enabled, the Row Cache Server
(RCS) process will cycle through its transaction ID (TID) values as checkpoint
or sweep operations that write modified data from the cache to the database
complete. This cycling is intended to free locked rows on database pages from
records that have been deleted so that the database keys and page space are
available to other processes inserting records into the database.

Enhancements 6–5

6.1.7 New Option for the GET DIAGNOSTICS Statement/HOT_STANDBY_MODE
For Oracle Rdb7 Release 7.0.5, a new option has been added to the GET
DIAGNOSTICS statement (this option was also available in Release 7.0.4
but the release note on it was mistakenly omitted).

• HOT_STANDBY_MODE

This option returns a text string that indicates if this database is
participating in a Hot Standby configuration as a master (returns ’MASTER’),
or a standby (returns ’STANDBY’), or is not in such a configuration (returns
’NONE’).

The result data type is CHAR (31).

The following example uses the new option.

SQL> set flags ’trace’;
SQL> declare :hsmode char(31);
SQL> begin
cont> get diagnostics :hsmode = HOT_STANDBY_MODE;
cont> trace :hsmode;
cont> end;
~Xt: NONE
SQL>

6.1.8 New Option for the GET DIAGNOSTICS
Statement/TRANSACTION_CHANGE_ALLOWED

For Oracle Rdb7 Release 7.0.5, a new option has been added to the GET
DIAGNOSTICS statement.

• TRANSACTION_CHANGE_ALLOWED

There are many situations where the SQL language programmer would like
to start or end a transaction but does not know if a transaction statement
(SET TRANSACTION, COMMIT or ROLLBACK) is currently permitted. The
transaction statements are not permitted in the following cases:

During a multi-database or global transaction. In this case the
transaction must be coordinated by the client, not a server based
procedure.

When a BEGIN ATOMIC compound statement is in the outer scope.

When a FOR cursor loop is active in an outer scope.

This option allows the programmer to detect these restricted locations and
conditionally execute a COMMIT, ROLLBACK or SET TRANSACTION as
needed.

The result data type is INTEGER. If transaction changes are permitted then
a value one (1) will be assigned. Otherwise the result will be zero (0).

The following example shows one use of this new option. The called stored
procedure ensures that changes to the transaction state are allowed before
proceeding with a ROLLBACK.

6–6 Enhancements

SQL> create module M1
cont> language SQL
cont>
cont> procedure ROLLBACK_THE_CHANGE
cont> comment is ’Perform a ROLLBACK only ’
cont> / ’if it is permitted’;
cont> begin
cont> declare :txn_change integer;
cont> get diagnostics
cont> :txn_change = TRANSACTION_CHANGE_ALLOWED;
cont> if :txn_change = 1
cont> then
cont> trace ’...rolling back’;
cont> rollback;
cont> else
cont> trace ’...skipping rollback’;
cont> end if;
cont> end;
cont>
cont> end module;
SQL>
SQL> create table RT (a integer);
SQL> insert into RT (a) values (1);
1 row inserted
SQL> commit;
SQL>
SQL> set flags ’trace’;
SQL>
SQL> begin
cont> call ROLLBACK_THE_CHANGE ();
cont> set transaction read only;
cont> for :x
cont> as select * from RT
cont> do
cont> call ROLLBACK_THE_CHANGE ();
cont> trace :x.a;
cont> end for;
cont> end;
~Xt: ...rolling back
~Xt: ...skipping rollback
~Xt: 1
SQL>

6.1.9 New Hot Standby Logicals
Three new logicals have been added to the Hot Standby product:

• RDM$BIND_HOT_NETWORK_RETRY_COUNT

This logical specifies the number of times the Hot Standby product should
attempt to re-connect a disconnected network link. The default value is
‘‘1’’. There is no minimum nor maximum value (the value ‘‘0’’ means do not
attempt to re-connect).

• RDM$BIND_HOT_NETWORK_RETRY_DELAY

This logical specifies the number of seconds to wait before attempting to
re-connect a disconnected network link, expressed in seconds. The default
value is ‘‘1’’ second. There is no minimum nor maximum value (the value ‘‘0’’
means to immediately attempt to re-connect).

• RDM$BIND_LRS_BACKUP_AIJ

Enhancements 6–7

This logical specifies that the after-image journals on the standby database
should be backed up, instead of merely being initialized, by the AIJ Backup
Server (ABS). This logical accepts the following values: ‘‘0’’ indicates that the
AIJ files should be initialized (this is the default); the value ‘‘1’’ indicates the
AIJ files should be backed up (backup filespecs must have been previously
configured).

6.2 Enhancements Provided in Oracle Rdb7 Release 7.0.4
6.2.1 Suggestion To Increase Field Size On RMU SHOW STATISTIC

The RMU/Show Statistic utility, in the menu under ‘‘Logical Area Information’’
sub-menu, ‘‘Logical Area Overview (Tables)’’ option, the ‘‘Logical Area Name’’ is
limited to 20 characters. Customers frequently have table names that are larger
than 20 characters, or they might have a tablename.areaname, and if this table
is partitioned, some of their area files might have the same beginning part of the
name with the end being different. It would be nice to have that 20 characters
extend out further. Added per customer request.

The following example shows the current display:

Node: ALPHA3 (1/1/24) Oracle Rdb X7.1-00 Perf. Monitor 2-NOV-1999 13:44:58.20
Rate: 1.00 Second Logical Area Overview (Tables Elapsed: 14 07:07:01.47
Page: 1 of 5 KODA_TEST:[R_ANDERSON.TCS_MASTER]TCS.RDB;1 Mode: Global
--
Logical.Area.Name... record fetch record store record erase discarded CurTot
RDB$RELATIONS.RDB$SY 24565 0 0 0
RDB$FIELD_VERSIONS.R 223904 0 0 0
RDB$INDICES.RDB$SYST 31495 15 23 0
RDB$INDEX_SEGMENTS.R 31064 45 69 0
RDB$FIELDS.RDB$SYSTE 27114 0 0 0
RDB$RELATION_FIELDS. 22520 0 0 0
RDB$DATABASE.RDB$SYS 1244 0 0 0
RDB$VIEW_RELATIONS.R 0 0 0 0
RDB$CONSTRAINT_RELAT 0 0 0 0
RDB$CONSTRAINTS.RDB$ 0 0 0 0
RDB$STORAGE_MAPS.RDB 2056 15 23 0
RDB$STORAGE_MAP_AREA 524 15 23 0
RDB$INTERRELATIONS.R 0 0 0 0
RDB$COLLATIONS.RDB$S 0 0 0 0
RDB$TRIGGERS.RDB$SYS 0 0 0 0
RDB$RELATION_CONSTRA 0 0 0 0
RDB$RELATION_CONSTRA 0 0 0 0
--
Config Exit Help Menu >next_page <prev_page Options Pause Reset Set_rate Write

There is no workaround to this problem.

This problem has been corrected in Oracle Rdb7 Release 7.0.4. By increasing
the terminal display width, the RMU/Show Statistic utility will display a larger
portion of the logical area name. For example, with the terminal width set to 90
columns, the above screen appears as follows:

6–8 Enhancements

Node: ALPHA3 (1/1/24) Oracle Rdb X7.1-00 Perf. Monitor 2-NOV-1999 13:47:15.35
Rate: 1.00 Second Logical Area Overview (Tables) Elapsed: 14 07:09:18.62
Page: 1 of 5 KODA_TEST:[R_ANDERSON.TCS_MASTER]TCS.RDB;1 Mode: Global
--
Logical.Area.Name............. record fetch record store record erase discarded CurTot
RDB$RELATIONS.RDB$SYSTEM 24565 0 0 0
RDB$FIELD_VERSIONS.RDB$SYSTEM 223904 0 0 0
RDB$INDICES.RDB$SYSTEM 31495 15 23 0
RDB$INDEX_SEGMENTS.RDB$SYSTEM 31064 45 69 0
RDB$FIELDS.RDB$SYSTEM 27114 0 0 0
RDB$RELATION_FIELDS.RDB$SYSTEM 22520 0 0 0
RDB$DATABASE.RDB$SYSTEM 1244 0 0 0
RDB$VIEW_RELATIONS.RDB$SYSTEM 0 0 0 0
RDB$CONSTRAINT_RELATIONS.RDB$S 0 0 0 0
RDB$CONSTRAINTS.RDB$SYSTEM 0 0 0 0
RDB$STORAGE_MAPS.RDB$SYSTEM 2056 15 23 0
RDB$STORAGE_MAP_AREAS.RDB$SYST 524 15 23 0
RDB$INTERRELATIONS.RDB$SYSTEM 0 0 0 0
RDB$COLLATIONS.RDB$SYSTEM 0 0 0 0
RDB$TRIGGERS.RDB$SYSTEM 0 0 0 0
RDB$RELATION_CONSTRAINTS.RDB$S 0 0 0 0
RDB$RELATION_CONSTRAINT_FLDS.R 0 0 0 0
--
Config Exit Help Menu >next_page <prev_page Options Pause Reset Set_rate Write Zoom !

6.2.2 SHOW STATS "Logical Area Overview" Enhancements
Currently, the RMU Show Statistic Utility ‘‘Logical Area Overview’’ screen can
only be sorted in alphabetical order. This is ideal for finding statistic information
for a particular logical area, but is less than ideal when the screen is used for
performance analysis.

The RMU Show Statistic Utility ‘‘Logical Area Overview’’ screen has been
enhanced to provide the ability to sort the display based on any of the displayed
column information. Since the user can configure the screen to display any
statistic information in any column, this enhancement provides an extremely
powerful tool for performance analysis.

Use the ‘‘Config’’ on-screen menu option to display the available sort options.

The following example shows a sample ‘‘Logical Area Overview’’ screen sorted on
column one, records fetched:

Enhancements 6–9

Node: ALPHA3 (1/1/1) Oracle Rdb X7.1-00 Perf. Monitor 5-NOV-1999 12:55:34.87
Rate: 0.50 Seconds Logical Area Overview (Tables) Elapsed: 2 03:00:48.99
Page: 1 of 4 KODA_TEST:[R_ANDERSON.TCS_MASTER]TCS.RDB;1 Mode: Global
--
Logical.Area.Name... record fetch record store record erase discarded CurTot
TRAN_SUMMARY_RECON2 43278 53187 0 0
TRAN_SUMMARY_RECON4 41732 53187 0 0
TRAN_SUMMARY_RECON6 35282 53187 0 0
TRAN_SUMMARY_RECON8 28196 8192 0 0
TRAN_SUMMARY_RECON12 16384 16384 0 0
TRAN_SUMMARY_RECON14 8192 16384 0 0
TRAN_SUMMARY_RECON16 8192 16384 0 0
LANE_MESSAGE_ID 0 0 0 0
STATS_FILE_INDEX 0 0 0 0
SERIAL_KEY_INDEX 0 0 0 0
LANE 0 0 0 0
XFER_CONTROL 0 0 0 0
SCHEDULE_MASTER 0 0 0 0
POOL_CARD 0 0 0 0
EMPLOYEES 0 196552 0 0
CSC_RECON 0 0 0 0
SECURITY_MODULES 0 0 0 0
--
Config Exit Help Menu >next_page <prev_page Options Pause Reset Set_rate Write

6.2.3 RCS Can Map All Caches at Database Open
By default, when the Oracle Rdb7 Row Cache feature is enabled, the first process
to access a cached table or storage area will create and map the associated row
cache(s). However, it is possible to cause the RCS process to create and map all
defined row caches when the database is opened.

If the system-wide logical name RDM$BIND_RCS_INITIAL_MAP_ALL_CACHES
is defined to the value "1" when the RCS process starts, the RCS process will
create and map all defined row caches for the database.

The RCS process sorts the cache definitions for 32-bit address space usage from
largest to smallest before the caches are created. This should help reduce memory
fragmentation when using the SHARED MEMORY IS SYSTEM option.

6.2.4 Performance Enhancements When Number of Cluster Nodes is 1
Several performance enhancements have been made to Oracle Rdb7. The
majority of these improvements are available for databases allowing access from
only one node in a cluster (ie, the database is set to NUMBER OF CLUSTER
NODES IS 1).

In particular, when the database is set to NUMBER OF CLUSTER NODES IS 1,
various locks and root file write operations have been eliminated. Particularly in
environments where this is a mix of read-only and read-write transactions, this
can have a significant performance impact.

The logical name RDM$BIND_AWL_TSNBLK_LOCKING can be set to "1" to
avoid several of these performance optimizations if desired.

Additionally, several internal data structures have been further aligned in
memory for improved memory access patterns and shorter code sequences on
Alpha processors.

6–10 Enhancements

6.2.5 New ROW LENGTH Default Calculated for CREATE CACHE
In prior versions of Oracle Rdb, when CREATE CACHE was used to define a
logical cache for an existing table or index but the ROW LENGTH IS clause was
omitted, the default length used was determined from the Area Inventory Page
(AIP) entry for the logical area. Use RMU/DUMP/LAREA=RDB$AIP to see these
length values. This default would sometimes be an inaccurate measure of the row
or node size.

With Oracle Rdb7 Release 7.0.4, the defaulting has been changed so that the row
length is derived from the Rdb metadata.

• When creating a logical cache, if a table already exists with the same name as
the cache, then that table’s current row length is calculated. This will account
for any table changes which may have been made since the table was created,
i.e. a column was added, dropped or altered in data type or size.

In prior releases, the value used from the AIP may have been out-of-date and
may have been too small (rows would not be cached) or too large (memory
would be wasted).

The default ROW LENGTH does not take into account the compression
attributes of the table. Database administrators are encouraged to compare
the default chosen with the actual rows on disk because row compression may
allow a smaller row length to be used.

Note

If data in the row is not compressible then it is possible that the
compression markers added to the row data will cause the length of
the stored row to exceed the default ROW LENGTH. Please examine the
stored data to see if this is a concern.

If the table is vertically partitioned then this new default will represent
the full row size, not the size of individual partitions. Oracle recommends
that care be taken to calculate appropriate ROW LENGTH when caching
vertically partitioned tables. In previous versions, the length used was for the
first matching logical area which didn’t necessarily provide a useful length.

System tables do not explicitly use row compression but are stored in an
internal abbreviated format. Therefore, Oracle does not recommend using
the default ROW LENGTH for Oracle Rdb system tables but rather database
administrators should calculate an appropriate value using the existing data
in the system table.

• When creating a logical cache, if a SORTED index exists with the same name
as the row cache, then the NODE SIZE specified by the CREATE or ALTER
INDEX statement will be used for the ROW LENGTH. If none was used then
the default size provided by Rdb will be used (typically this is 430 bytes).

In prior releases the value used from the AIP for a SORTED index allowing
duplicates was 215 bytes which was too small to cache the index nodes and
may have only allowed the duplicate nodes to be cached.

Note

If an index and a table are given the same name, then Oracle Rdb will
use the length from the table and not the index. In this case you must

Enhancements 6–11

use an explicit ROW LENGTH clause to provide an acceptable length.

• In all other cases, the ROW LENGTH will default to 256. Oracle recommends
that you calculate and specify an appropriate ROW LENGTH when creating
physical caches or when creating logical caches for hashed index nodes.

These changes will have no affect on existing row cache definitions.

6.2.6 RMU /CHECKPOINT /WAIT /UNTIL
A new qualifier ‘‘/UNTIL=date-and-time’’ has been added to the ‘‘RMU
/CHECKPOINT /WAIT’’ command. The UNTIL qualifier specifies the time at
which the RMU /CHECKPOINT /WAIT command will stop waiting for the
checkpoint and will return an error back to the user.

If you do not specify the UNTIL qualifier, the wait is indefinite.

6.2.7 RMU Extract Supports New AUDIT_COMMENT Option
Oracle Rdb7 Release 7.0.4 adds new functionality to RMU Extract. A new
AUDIT_COMMENT option has been added that annotates the extracted
objects with the creation and last alter timestamps as well as the username
of the creator. The date/time values are displayed using the current settings of
SYS$LANGUAGE and LIB$DT_FORMAT.

The default is /OPTION=NOAUDIT_COMMENT.

The following example shows an extract from the generated script when the
SYS$LANGUAGE and LIB$DT_FORMAT are defined. The language and format
will default to ENGLISH and the standard OpenVMS format if these logical
names are not defined.

$ define LIB$DT_FORMAT LIB$DATE_FORMAT_002,LIB$TIME_FORMAT_001
$ define SYS$LANGUAGE french
$ rmu/extract/out=sys$output/item=domain mf_personnel/opt=audit_comment

.

.

.
-- Created on 8 janvier 1998 13:01:31.20
-- Never altered
-- Created by RDB_EXECUTE
--
create domain ADDRESS_DATA_1

CHAR (25);
comment on domain ADDRESS_DATA_1 is

’ Street name’;
.
.
.

6.2.8 Revised Oracle Rdb for OpenVMS Client Kit
The content of the Oracle Rdb for OpenVMS Client kit has been revised to reflect
current software. This release of the client kit contains the following software:

• DBAPack V7.0.1 for the Windows NT on Intel, Windows 95 and Windows 98
platforms

• SQL/Services for Oracle Rdb Version 7.0-4

• SQL/Services Client for Compaq Tru64 UNIX Version 4.0

• SQL/Services Client for Sun Solaris

6–12 Enhancements

• Oracle Rdb ODBC Version 2.10.17 (32 bit version)

• Oracle Rdb ODBC for Mac OS

• Oracle Installer Version 3.3.1.2.4 (replaces Version 3.3.1.0.0)

The following software is no longer provided as part of the Oracle Rdb on OpenVMS Client kit.

• DBAPack for the Windows NT on DEC Alpha platform

• DBAPack for the Windows 3.1 platform

• Oracle Enterprise Manager Version 1.3.5

• Personal Oracle7 Version 7.0.3

Enhancements 6–13

7
LogMiner for Rdb

Oracle Rdb after-image journal (.aij) files contain a wealth of useful information
about the history of transactions in a database. After-image journal files
contain all of the data needed to perform database recovery. These files record
every change made to data and metadata in the database. The LogMiner for
Rdb feature provides an interface to the data record contents of Oracle Rdb
after-image journal files. Data records that are added, updated, or deleted by
committed transactions may be extracted (unloaded) from the .aij files in a format
suitable for subsequent loading into another database or for use by user-written
application programs.

Oracle Rdb after-image journaling protects the integrity of your data by
recording all changes made by committed transactions to a database in a
sequential log or journal file. Oracle Corporation recommends that you enable
after-image journaling to record your database transaction activity between full
backup operations as part of your database restore and recovery strategy. The
after-image journal file is also used to enable several database performance
enhancements (such as the fast commit, row cache, and hot standby features).

See the Oracle Rdb7 Guide to Database Maintenance for more information about
setting up after-image journaling.

To use LogMiner for Rdb, follow these steps:

1. Enable the database for LogMiner operation using the RMU Set Logminer
command. See Section 7.1 for additional information.

2. Back up the after-image journal file using the Quiet_Point qualifier to the
RMU Backup command.

3. Extract changed records using the RMU Unload After_Journal command. See
Section 7.2 for additional information.

7.1 RMU Set Logminer Command

Allows you to change the LogMiner state of a database.

Format

RMU/Set Logminer root-file-spec

Command Qualifiers Defaults

/Disable See description
/Enable See description
/[No]Log Current DCL verify value

LogMiner for Rdb 7–1

Description

Use this command to enable or disable LogMiner operations on an Oracle Rdb
database. When LogMiner is enabled, the Oracle Rdb database software writes
additional information to the after-image journal file when records are added,
modified, and deleted from the database. This information is used during the
unload operation.

Command Parameters

root-file-spec
The root file specification of the database. The default file extension is .rdb.

Command Qualifiers

Disable
Specifies that LogMiner operations are to be disabled for the database. When
LogMiner is disabled, the Oracle Rdb software does not journal information
required for LogMiner operations. When LogMiner is disabled for a database, the
RMU Unload After_Journal command is not functional on that database.

Enable
Specifies that LogMiner operations are to be enabled for the database. When
LogMiner is enabled, the Oracle Rdb database software logs additional
information to the after-image journal file. This information allows LogMiner to
extract records. The database must already have after-image journaling enabled.

Log
Nolog
Specifies that the setting of the LogMiner state for the database be reported
to SYS$OUTPUT. The default is the setting of the DCL VERIFY flag, which is
controlled by the DCL SET VERIFY command.

Usage Notes

• To use the RMU Set Logminer command, you must have the RMU$BACKUP,
RMU$RESTORE, or RMU$ALTER privilege in the root file access control list
(ACL) for the database or the OpenVMS SYSPRV or BYPASS privilege.

• The RMU Set Logminer command requires offline access to the database. The
database must be closed and no other users may be accessing the database.

• Execute a full database backup operation after issuing an RMU Set Logminer
command that displays the RMU-W-DOFULLBCK warning message.
Immediately after enabling LogMiner, you should perform a database
after-image journal backup using the RMU Backup After_Journal command.

Examples

Example 1

The following example enables a database for LogMiner for Rdb operation.

$ RMU /SET LOGMINER /ENABLE OLTPDB.RDB

7–2 LogMiner for Rdb

7.2 RMU Unload After_Journal Command

Allows you to extract added, modified, and deleted record contents from
committed transactions from specified tables in one or more after-image journal
files.

Format

RMU/Unload/After_Journal root-file-spec aij-file-name

Command Qualifiers Defaults

/Before=date-time None
/Extend_Size=integer /Extend_Size=1000
/IO_Buffers=integer /IO_Buffers=2
/[No]Log Current DCL verify value
/Options=File=file-spec See description
/Output=file-spec /Output=SYS$OUTPUT
/Select=selection-type /Select=Commit_Transaction
/Since=date-time None
/Sort_Workfiles=integer /Sort_Workfiles=2
/Statistics_Interval=integer See description
/Table=(Name=table-name, [table-options ...]) See description
/[No]Trace /Notrace

Description

The RMU Unload After_Journal command translates the binary data record
contents of an after-image journal (.aij) file into an output file. Data records
for the specified tables for committed transactions are extracted to an output
stream (file, device, or application callback) in the order that the transactions
were committed.

To use the RMU Unload After_Journal command, you must have first enabled
the database for LogMiner extraction. Use the RMU Set Logminer command to
enable the LogMiner for Rdb feature for the database. See the Section 7.1 for
more information.

Data records extracted from the .aij file are those records that transactions added,
modified, or deleted in base database tables. Index nodes, database metadata,
segmented strings (BLOB), views, COMPUTED BY columns, system records, and
temporary tables cannot be unloaded from after-image journal files.

Only the final content of a record for each transaction is extracted. Multiple
changes to a single record within a transaction are condensed so that only the
last revision of the record appears in the output stream. It is not possible to
determine which columns were changed in a data record directly from the after-
image journal file. The record itself would have to be compared to the content of
a previous record in order to determine which columns were changed.

The database used to create the after-image journal files being extracted must
be available during the RMU Unload After_Journal command execution. The
database is used to obtain metadata information (such as table names, column
counts, record version, and record compression) needed to extract data records
from the .aij file. The database may be accessed either locally (on the same
computer system) or remotely (over a network connection). The database is used

LogMiner for Rdb 7–3

only as a metadata reference. The database is read solely to load the metadata
and is then detached.

The after-image journal file or files are processed sequentially, and all specified
tables are extracted in one pass through the after-image journal file.

As each transaction commit record is processed, all modified and deleted records
for the specified tables are sorted to remove duplicates and then the modified and
deleted records are written to the output streams. Transactions that were rolled
back are discarded. Data records for tables not being extracted are discarded.
The actual order of output records within a transaction is not predictable.

In the extracted output, records that were modified or added are returned as
being modified. It is not possible to distinguish between inserted and updated
records in the output stream. Deleted (erased) records are returned as being
deleted. A transaction that modifies and deletes a record generates only a deleted
record. A transaction that adds a new record to the database and then deletes it
within the same transaction generates only a deleted record.

LogMiner signals that a row has been deleted by placing a D in the RDB$LM_
ACTION field and then recording the contents of the row at the instant before
the delete operation in the user fields of the output record. If a row was modified
several times within a transaction before being deleted, the output record will
contain only the delete indicator and the results of the last modify operation.
If a row is inserted and deleted in the same transaction, only the delete record
appears in the output.

Records from multiple tables may be output to the same or to different
destination streams. Possible output destination streams include the following:

• File

• OpenVMS Mailbox

• OpenVMS Pipe

• Direct callback to an application through a run-time activated sharable image

Command Parameters

root-file-spec
The root file specification of the database for the after-image journal file from
which tables will be unloaded. The default file extension is .rdb.

The database must be the same database that was used to create the after-image
journal files. The database is required so that the table metadata (information
about data) is available to the RMU Unload After_Journal command. In
particular, the names and relation identification of valid tables within the
database is required along with the number of columns in the table and the
compression information for the table in various storage areas.

The process attaches to the database briefly at the beginning of the extraction
operation in order to read the metadata. Once the metadata has been read, the
process disconnects from the database for the remainder of the operation.

aij-file-name
One or more input after-image journal backup files to be used as the source of
the extraction operation. Multiple journal files can be extracted by specifying
a comma-separated list of file specifications. OpenVMS wildcard specifications
(using the * and % characters) are supported to extract a group of files. A

7–4 LogMiner for Rdb

file specification beginning with the at (@) character refers to an options file
containing a list of after-image journal files (rather than the file specification of
an after-image journal itself). If you use the at (@) character syntax, you must
enclose the at (@) character and the file name in double quotation marks (for
example, specify aij-file-name as "@files.opt"). The default file extension is .aij.

Command Qualifiers

Before=date-time
Specifies the ending time and date for transactions to be extracted. Based on
the Select qualifier, transactions that committed or started prior to the specified
Before date are selected. Information changed due to transactions that committed
or started after the Before date is not included in the output.

Extend_Size=integer
Specifies the file allocation and extension quantity for the output data files. The
default extension size is 1000 blocks. Using a larger value can help reduce output
file fragmentation and can improve performance when large amounts of data are
extracted.

IO_Buffers=integer
Specifies the number of I/O buffers used for the output data files. The default
number of buffers is 2. The default value is generally adequate. With sufficiently
fast I/O subsystem hardware, additional buffers may improve performance.
However, using a larger number of buffers will also consume additional virtual
memory and process working set.

Log
Nolog
Specifies that the extraction of the .aij file be reported to SYS$OUTPUT or the
destination specified with the Output qualifier. When activity is logged, the
output from the Log qualifier provides the number of transactions committed
and rolled back. The default is the setting of the DCL VERIFY flag, which is
controlled by the DCL SET VERIFY command.

Options=File=file-spec
An options file contains a list of tables and output destinations. The options file
may be used instead of, or along with, the Table qualifier to specify the tables
to be extracted. Each line of the options file must specify a table name prefixed
with "Table=". After the table name, the output destination is specified as either
"Output=" or "Callback_Module=" and "Callback_Routine=".

TABLE=tblname,CALLBACK_MODULE=image,CALLBACK_ROUTINE=routine
TABLE=tblname,OUTPUT=outfile

The Record_Definition=file-spec option from the Table qualifier can be used to
create a record definition file for the output data. The default file type is .rrd and
the default file name is the name of the table.

The Table_Definition=file-spec option from the Table qualifier can be used to
create a file with an SQL statement to create a table to hold transaction data.
The default file type is .sql and the default file name is the name of the table.

Each option in the Options=File qualifier must be fully specified (no abbreviations
are allowed) and followed with an equal sign (=) and a value string. The value
string must be followed by a comma or the end of a line. Continuation lines
may be specified by using a trailing dash. Comments are indicated by using the
exclamation point (!) character.

LogMiner for Rdb 7–5

Output=file-spec
Redirects the log and trace output (selected with the Log and Trace qualifiers) to
the named file. If this qualifier is not specified, the output generated by the Log
and Trace qualifiers, which can be voluminous, is displayed to SYS$OUTPUT.

Select=selection-type
Specifies if the date and time of the Before and Since qualifiers refers to
transaction start time or transaction commit time.

The following options can be specified as the selection-type of the Select qualifier:

• Commit_Transaction

Specifies that the Before and Since qualifiers select transactions based on the
time of the transaction commit.

• Start_Transaction

Specifies that the Before and Since qualifiers select transactions based on the
time of the transaction start.

The default for date selection is Commit_Transaction.

Since=date-time
Specifies the starting time for transactions to be extracted. Based on the Select
qualifier, transactions that committed on or after the specified Since date are
selected. Information from transactions that committed or started prior to the
specified Since date is not included in the output.

Sort_Workfiles=integer
Specifies the number of sort work files. The default number of sort work files is
2. When large transactions are being extracted, using additional sort work files
may improve performance by distributing I/O loads over multiple disk devices.
Use the SORTWORKn (where n is a number from 0 to 9) logical names to specify
the location of the sort work files.

Statistics_Interval=integer
Specifies that statistics are to be displayed at regular intervals so that you can
evaluate the progress of the unload operation.

The displayed statistics include:

• Elapsed time

• CPU time

• Buffered I/O

• Direct I/O

• Page faults

• Number of records unloaded for a table

If the Statistics_Interval qualifier is specified, the default interval is 60 seconds (1
minute). The minimum value is 1 second. If the unload operation completes
successfully before the first time interval has passed, you will receive an
informational message on the number of files unloaded. If the unload operation
is unsuccessful before the first time interval has passed, you will receive error
messages and statistics on the number of records unloaded.

At any time during the unload operation, you can press Ctrl/T to display the
current statistics.

7–6 LogMiner for Rdb

Table=(Name=table-name, table-options)
Specifies the name of a table to be unloaded and an output destination. The
table-name must be a table within the database. Views, indexes, and system
tables may not be unloaded from the after-image journal file.

The following table-options can be specified with the Table qualifier:

• Output=file-spec

If an Output file specification is present, unloaded records are written to the
specified location.

• Callback_Module=image-name, Callback_Routine=routine-name

LogMiner for Rdb uses the OpenVMS library routine LIB$FIND_IMAGE_
SYMBOL to activate the specified sharable image and locate the specified
entry point routine name. This routine will be called with each extracted
record. A final call is made with the "Action" field set to "E" to indicate the
end of the output stream. These options must be specified together.

• Record_Definition=file-spec

The Record_Definition=file-spec option can be used to create a record
definition .rrd file for the output data. The default file type is .rrd and
the default file name is the name of the table.

• Table_Definition=file-spec

The Table_Definition=file-spec option can be used to create a file with an SQL
statement to create a table to hold transaction data. The default file type is
.sql and the default file name is the name of the table.

Note that, unlike other qualifiers where only the final occurrence of the qualifier
is used by an application, the Table qualifier may be specified multiple times for
the RMU Unload After_Journal command. Each occurrence of the Table qualifier
must specify a different table.

Trace
NoTrace
Specifies that the unloading of the .aij file be traced. The default is Notrace.
When the unload operation is traced, the output from the Trace qualifier identifies
transactions in the .aij file by transaction sequence numbers (TSNs) and describes
what Oracle RMU did with each transaction during the unload process. You can
specify the Log qualifier with the Trace qualifier.

Usage Notes

• To use the RMU Unload After_Journal command for a database, you must
have the RMU$DUMP privilege in the root file access control list (ACL) for
the database or the OpenVMS SYSPRV or BYPASS privilege.

• You can only extract changed records from a backup copy of the after-image
journal files. You create this file using the RMU Backup After_Journal
command. You also cannot extract from an .aij file that has been optimized
with the RMU Optimize After_Journal command. And, you cannot extract an
active, primary .aij file.

LogMiner for Rdb 7–7

• As part of the extraction process, Oracle RMU sorts extracted journal records
to remove duplicate record updates. Because .aij file extraction uses the
OpenVMS Sort/Merge Utility (SORT/MERGE) to sort journal records, you
can improve the efficiency of the sort operation by changing the number and
location of the work files used by SORT/MERGE. The number of work files is
controlled by the Sort_Workfiles qualifier of the RMU Unload After_Journal
command. The allowed values are 1 through 10 inclusive, with a default
value of 2. The location of these work files can be specified with device
specifications, using the SORTWORKn logical name (where n is a number
from 0 to 9). See the OpenVMS documentation set for more information on
using SORT/MERGE. See the Oracle Rdb7 Guide to Database Performance
and Tuning for more information on using these Oracle Rdb logical names.

• You can redirect the .aij rollforward temporary work files to a different disk
and directory location than the current default directory by assigning a
different directory to the RDM$BIND_AIJ_WORK_FILE logical name in the
LNM$FILE_DEV name table. This can help to alleviate I/O bottlenecks that
might occur on the default disk.

• The RMU Unload After_Journal command can read either a backed up .aij
file on disk or a backed up .aij file on tape that is in the Old_File format.

• One or more tables can be selected to be extracted from an after-image
journal file. All tables specified by the Table qualifier and all those specified
in the Options file are combined to produce a single list of output streams. A
particular table may be specified only once. Multiple tables may be written
to the same output destination by specifying the exact same output stream
specification (that is, by using an identical file specification).

• At the completion of the unload operation, RMU creates a number of DCL
symbols that contain information about the extraction statistics. For each
table extracted, RMU creates the following symbols:

– RMU$UNLOAD_DELETE_COUNT_tablename

– RMU$UNLOAD_MODIFY_COUNT_tablename

– RMU$UNLOAD_OUTPUT_tablename

The tablename component of the symbol is the name of the table. When
multiple tables are extracted in one operation, multiple sets of symbols are
created. The value for the symbols RMU$UNLOAD_MODIFY_COUNT_
tablename and RMU$UNLOAD_DELETE_COUNT_tablename is a character
string containing the number of records returned for modified and deleted
rows. The RMU$UNLOAD_OUTPUT_tablename symbol is a character string
indicating the full file specification for the output destination, or the sharable
image name and routine name when the output destination is an application
callback routine.

• When using the Callback_Module and Callback_Routine option, you must
supply a sharable image with a universal symbol or entry point for LogMiner
to be able to call your routine. See the OpenVMS manual discussing the
Linker utility for more information about creating sharable images.

• Your Callback_Routine will be called once for each output record. The
Callback_Routine will be passed two parameters:

– The length of the output record, by longword value

– A pointer to the record buffer

7–8 LogMiner for Rdb

The record buffer is a data structure of the same fields and lengths written to
an output destination.

• Because the Oracle RMU image is a known image, your sharable image
must also be a known image. Use the OpenVMS Install Utility to make your
sharable image known. You may wish to establish an exit handler to perform
any required cleanup processing at the end of the extraction.

Examples

Example 1

The following example unloads the EMPLOYEES table from the .aij backup file
MFP.AIJBCK.

RMU /UNLOAD /AFTER_JOURNAL MFP.RDB MFP.AIJBCK -
/TABLE = (NAME = EMPLOYEES, OUTPUT = EMPLOYEES.DAT)

Example 2

The following example simultaneously unloads the SALES, STOCK, SHIPPING,
and ORDERS tables from the .aij backup files MFS.AIJBCK_1-JUL-1999 through
MFS.AIJBCK_3-JUL-1999. Note that the input .aij backup files are processed
sequentially in the order specified.

$ RMU /UNLOAD /AFTER_JOURNAL MFS.RDB -
MFS.AIJBCK_1-JUL-1999, -
MFS.AIJBCK_2-JUL-1999, -
MFS.AIJBCK_3-JUL-1999 -
/TABLE = (NAME = SALES, OUTPUT = SALES.DAT) -
/TABLE = (NAME = STOCK, OUTPUT = STOCK.DAT) -
/TABLE = (NAME = SHIPPING, OUTPUT = SHIPPING.DAT) -
/TABLE = (NAME = ORDER, OUTPUT = ORDER.DAT)

Example 3

To unload data based on a time range, use the Before and Since qualifiers. The
following example extracts changes made to the PLANETS table by transactions
that committed between 1-SEP-1999 at 14:30 and 3-SEP-1999 at 16:00.

$ RMU /UNLOAD /AFTER_JOURNAL MFS.RDB MFS.AIJBCK -
/TABLE = (NAME = PLANETS, OUTPUT = PLANETS.DAT) -
/BEFORE = "3-SEP-1999 16:00:00.00" -
/SINCE = "1-SEP-1999 14:30:00.00"

Example 4

The following example simultaneously unloads the SALES and STOCK tables
from all .aij backup files that match the wildcard specification MFS.AIJBCK_
1999-07-*. The input .aij backup files are processed sequentially in the order
returned from the file system.

$ RMU /UNLOAD /AFTER_JOURNAL MFS.RDB -
MFS.AIJBCK_1999-07-* -
/TABLE = (NAME = SALES, OUTPUT = SALES.DAT) -
/TABLE = (NAME = STOCK, OUTPUT = STOCK.DAT)

Example 5

The following example unloads the TICKER table from the .aij backup files listed
in the file called AIJ_BACKUP_FILES.DAT (note the double quotation marks
surrounding the at (@) character and the file specification). The input .aij backup
files are processed sequentially. The output records are written to the mailbox

LogMiner for Rdb 7–9

device called MBA127:. A separate program is already running on the system,
and it reads and processes the data written to the mailbox.

$ RMU /UNLOAD /AFTER_JOURNAL MFS.RDB -
"@AIJ_BACKUP_FILES.DAT" -
/TABLE = (NAME = TICKER, OUTPUT = MBA127:)

Example 6

To move transaction data from one database into a change table in another
database, you can use the RMU Unload After_Journal command followed by
RMU Load commands. A record definition (.rrd) file would need to be created for
each table being loaded into the target database. The record definition files can
be created by specifying the Record_Definition option on the Table qualifier.

$ RMU /UNLOAD /AFTER_JOURNAL OLTP.RDB MYAIJ.AIJBCK -
/TABLE = (NAME = MYTBL, -

OUTPUT = MYTBL.DAT, -
RECORD_DEFINITION=MYLOGTBL) -

/TABLE = (NAME = SALE, -
OUTPUT=SALE.DAT, -
RECORD_DEFINITION=SALELOGTBL)

$ RMU /LOAD WAREHOUSE.RDB MYLOGTBL MYTBL.DAT -
/RECORD_DEFINITION = FILE = MYLOGTBL.RRD

$ RMU /LOAD WAREHOUSE.RDB SALELOGTBL SALE.DAT -
/RECORD_DEFINITION = FILE = SALELOGTBL.RRD

Example 7

Instead of the Table qualifier, an Options file can be used to specify the table or
tables to be extracted, as shown in the following example.

$ TYPE TABLES.OPTIONS
TABLE=MYTBL, OUTPUT=MYTBL.DAT
TABLE=SALES, OUTPUT=SALES.DAT
$ RMU /UNLOAD /AFTER_JOURNAL OLTP.RDB MYAIJ.AIJBCK -

/OPTIONS = FILE = TABLES.OPTIONS

7–10 LogMiner for Rdb

7.3 Restrictions and Limitations with LogMiner for Rdb
The following restrictions exist for the LogMiner for Rdb feature:

• Temporary tables cannot be extracted. Modifications to temporary tables are
not written to the after-image journal file and, therefore, are not available to
LogMiner for Rdb.

• Optimized after-image journal files cannot be used as input to the LogMiner
for Rdb. Information needed by the RMU Unload After_Journal command is
removed by the optimization process.

• Records removed from tables using the SQL TRUNCATE TABLE statement
are not extracted. The SQL TRUNCATE TABLE statement does not journal
each individual data record being removed from the database.

• Records removed by dropping tables using the SQL DROP TABLE statement
are not extracted. The SQL DROP TABLE statement does not journal each
individual data record being removed from the database.

• Tables that use the vertical record partitioning (VRP) feature cannot be
extracted using LogMiner for Rdb. LogMiner software currently does not
detect these tables. A future release of Oracle Rdb will detect and reject
access to vertically partitioned tables.

• Segmented string data (BLOB) cannot be extracted using LogMiner for Rdb.
Because the segmented string data is related to the base table row by means
of a database key, there is no convenient way to determine what data to
extract. Additionally, the data type of an extracted column is changed from
LIST OF BYTE VARYING to BIGINT. This column contains the DBKEY of
the original BLOB data. Therefore, the contents of this column should be
considered unreliable.

• COMPUTED BY columns in a table are not extracted. These columns are not
stored in the after-image journal file.

• VARCHAR fields are not space padded in the output file. The VARCHAR data
type is extracted as a 2-byte count field and a fixed-length data field. The
2-byte count field indicates the number of valid characters in the fixed-length
data field. Any additional contents in the data field are unpredictable.

• You cannot extract changes to a table when the table definition is changed
within an after-image journal file. Data definition language (DDL) changes to
a table are not allowed within an .aij file being extracted. All records in an
.aij file must be the current record version. If you are going to perform DDL
operations on tables that you wish to extract using the LogMiner for Rdb, you
should:

1. Back up your after-image journal files.

2. Extract the .aij files using the RMU Unload After_Journal command.

3. Make the DDL changes.

• Do not use the OpenVMS Alpha High Performance Sort/Merge
utility (selected by defining the logical name SORTSHR to
SYS$SHARE:HYPERSORT) when using LogMiner for Rdb. HYPERSORT
supports only a subset of the library sort routines that LogMiner requires.
Make sure that the SORTSHR logical name is not defined to HYPERSORT.

LogMiner for Rdb 7–11

7.4 Information Returned by LogMiner for Rdb
LogMiner for Rdb appends several output fields to the data fields, creating an
output record. The output record contains fixed-length fields in a binary data
format (that is, integer fields are not converted to text strings). The data fields
correspond to the extracted table columns. This information may or may not
be required by all applications and readers of the data. There is currently no
available method to restrict or reorder the output fields.

Extracted data field contents are the fields that are actually stored in the Oracle
Rdb database. COMPUTED BY fields are not extracted because they are not
stored in the database or in the after-image journal file. Segmented string
(BLOB) contents are not extracted.

Table 7–1 describes the output fields and data types of an output record.

Table 7–1 Output Fields

Field Name Data Type Description

ACTION CHAR (1 byte) Indicates record state. "M" indicates an
insert or modify action. "D" indicates a
delete action. "E" indicates stream end-
of-file (EOF) when a callback routine is
being used.

RELATION_NAME CHAR (31 bytes) Table name. Space padded to 31
characters.

RECORD_TYPE LONGWORD INTEGER The Oracle Rdb internal relation
identifier.

DATA_LEN WORD INTEGER Length, in bytes, of the data record
content.

NBV_LEN WORD INTEGER Length, in bits, of the null bit vector
content.

DBK DBKEY (64-bit
QUADWORD)

Records logical database key. The
database key is a 3-field structure
containing a 16-bit line number, a 32-bit
page number and a 16-bit area number.

START_TAD DATE VMS Date/time of the start of the transaction.

COMMIT_TAD DATE VMS Date/time of the commitment of the
transaction.

TSN QUADWORD INTEGER Transaction sequence number of the
transaction that performed the record
operation.

RECORD_
VERSION

WORD INTEGER Record version.

Record Data Varies Actual data record field contents.

(continued on next page)

7–12 LogMiner for Rdb

Table 7–1 (Cont.) Output Fields

Field Name Data Type Description

Record NBV BIT VECTOR (array of
bits)

Null bit vector. There is one bit for each
field in the data record. If a bit value is
1, the corresponding field is NULL; if a
bit value is 0, the corresponding field is
not NULL and contains an actual data
value. The null bit vector begins on a
byte boundary. Any extra bits in the
final byte of the vector after the final
null bit are unused.

7.5 Record Definition Prefix for LogMiner Fields
An RMS file containing the record structure definition for the output file can
be used as an input file to the RMU Load command if extracted data is to be
loaded into an Oracle Rdb database. The record description uses the CDO record
and field definition format (this is the format used by the RMU Load and RMU
Unload commands when the Record_Definition qualifier is used). The default file
extension is .rrd.

The record definition for the fields that LogMiner for Rdb writes to the output
is shown in the following example. These fields can be manually appended to a
record definition file for the actual user data fields being unloaded. Alternately,
the Record_Definition qualifier can be used with the Table qualifier or within an
Options file to automatically create the record definition file. This can be used to
load a transaction table within a database. A transaction table is the output
that LogMiner for Rdb writes to a table consisting of sequential transactions
performed in a database.

DEFINE FIELD RDB$LM_ACTION DATATYPE IS TEXT SIZE IS 1.
DEFINE FIELD RDB$LM_RELATION_NAME DATATYPE IS TEXT SIZE IS 31.
DEFINE FIELD RDB$LM_RECORD_TYPE DATATYPE IS SIGNED LONGWORD.
DEFINE FIELD RDB$LM_DATA_LEN DATATYPE IS SIGNED WORD.
DEFINE FIELD RDB$LM_NBV_LEN DATATYPE IS SIGNED WORD.
DEFINE FIELD RDB$LM_DBK DATATYPE IS SIGNED QUADWORD.
DEFINE FIELD RDB$LM_START_TAD DATETYPE IS DATE
DEFINE FIELD RDB$LM_COMMIT_TAD DATATYPE IS DATE
DEFINE FIELD RDB$LM_TSN DATATYPE IS SIGNED QUADWORD.
DEFINE FIELD RDB$LM_RECORD_VERSION DATATYPE IS SIGNED WORD.

7.6 SQL Table Definition Prefix for LogMiner Fields
The SQL record definition for the fields that LogMiner for Rdb writes to the
output is shown in the following example. These fields can be manually appended
to the table creation command for the actual user data fields being unloaded.
Alternately, the Table_Definition qualifier can be used with the Table qualifier or
within an Options file to automatically create the SQL definition file. This can be
used to create a transaction table of changed data.

LogMiner for Rdb 7–13

SQL> create table MYLOGTABLE (
cont> RDB$LM_ACTION CHAR,
cont> RDB$LM_RELATION_NAME CHAR (31),
cont> RDB$LM_RECORD_TYPE INTEGER,
cont> RDB$LM_DATA_LEN SMALLINT,
cont> RDB$LM_NBV_LEN SMALLINT,
cont> RDB$LM_DBK BIGINT,
cont> RDB$LM_START_TAD DATE VMS,
cont> RDB$LM_COMMIT_TAD DATE VMS,
cont> RDB$LM_TSN BIGINT,
cont> RDB$LM_RECORD_VERSION SMALLINT ...);

7.7 Segmented String Columns
Segmented string (also called BLOB or LIST OF BYTE VARYING) column data
is not extracted. However, the field definition itself is extracted as a quadword
integer representing the database key of the original segmented string data. In
generated table definition or record definition files, a comment is added indicating
that the segmented string data type is not supported by LogMiner for Rdb.

7.8 Additional Examples
The following sections contain additional examples.

7.8.1 Example .rrd for the EMPLOYEES Table
The following example is the transaction table record definition (.rrd) file for the
EMPLOYEES table from the PERSONNEL database:

DEFINE FIELD RDB$LM_ACTION DATATYPE IS TEXT SIZE IS 1.
DEFINE FIELD RDB$LM_RELATION_NAME DATATYPE IS TEXT SIZE IS 31.
DEFINE FIELD RDB$LM_RECORD_TYPE DATATYPE IS SIGNED LONGWORD.
DEFINE FIELD RDB$LM_DATA_LEN DATATYPE IS SIGNED WORD.
DEFINE FIELD RDB$LM_NBV_LEN DATATYPE IS SIGNED WORD.
DEFINE FIELD RDB$LM_DBK DATATYPE IS SIGNED QUADWORD.
DEFINE FIELD RDB$LM_START_TAD DATATYPE IS DATE.
DEFINE FIELD RDB$LM_COMMIT_TAD DATATYPE IS DATE.
DEFINE FIELD RDB$LM_TSN DATATYPE IS SIGNED QUADWORD.
DEFINE FIELD RDB$LM_RECORD_VERSION DATATYPE IS SIGNED WORD.

DEFINE FIELD EMPLOYEE_ID DATATYPE IS TEXT SIZE IS 5.
DEFINE FIELD LAST_NAME DATATYPE IS TEXT SIZE IS 14.
DEFINE FIELD FIRST_NAME DATATYPE IS TEXT SIZE IS 10.
DEFINE FIELD MIDDLE_INITIAL DATATYPE IS TEXT SIZE IS 1.
DEFINE FIELD ADDRESS_DATA_1 DATATYPE IS TEXT SIZE IS 25.
DEFINE FIELD ADDRESS_DATA_2 DATATYPE IS TEXT SIZE IS 20.
DEFINE FIELD CITY DATATYPE IS TEXT SIZE IS 20.
DEFINE FIELD STATE DATATYPE IS TEXT SIZE IS 2.
DEFINE FIELD POSTAL_CODE DATATYPE IS TEXT SIZE IS 5.
DEFINE FIELD SEX DATATYPE IS TEXT SIZE IS 1.
DEFINE FIELD BIRTHDAY DATATYPE IS DATE.
DEFINE FIELD STATUS_CODE DATATYPE IS TEXT SIZE IS 1.

7–14 LogMiner for Rdb

DEFINE RECORD EMPLOYEES.
RDB$LM_ACTION .
RDB$LM_RELATION_NAME .
RDB$LM_RECORD_TYPE .
RDB$LM_DATA_LEN .
RDB$LM_NBV_LEN .
RDB$LM_DBK .
RDB$LM_START_TAD .
RDB$LM_COMMIT_TAD .
RDB$LM_TSN .
RDB$LM_RECORD_VERSION .
EMPLOYEE_ID .
LAST_NAME .
FIRST_NAME .
MIDDLE_INITIAL .
ADDRESS_DATA_1 .
ADDRESS_DATA_2 .
CITY .
STATE .
POSTAL_CODE .
SEX .
BIRTHDAY .
STATUS_CODE .

END EMPLOYEES RECORD.

7.8.2 Callback Module for the EMPLOYEES Table
The following C source code segment demonstrates the structure of a module that
can be used as a callback module and routine to process employee transaction
information from LogMiner for Rdb. The routine, Employees_Callback, would be
called by LogMiner for Rdb for each extracted record. Note that the final time
the callback routine is called, the RDB$LM_ACTION field will be set to "E" to
indicate the end of the output stream.

#include <stdio>

typedef unsigned char date_type[8];
typedef unsigned char dbkey_type[8];
typedef unsigned char tsn_type[8];

typedef struct {
unsigned char rdb$lm_action;
char rdb$lm_relation_name[31];
unsigned int rdb$lm_record_type;
unsigned short int rdb$lm_data_len;
unsigned short int rdb$lm_nbv_len;
dbkey_type rdb$lm_dbk;
date_type rdb$lm_start_tad;
date_type rdb$lm_commit_tad;
tsn_type rdb$lm_tsn;
unsigned short int rdb$lm_record_version;
char employee_id[5];
char last_name[14];
char first_name[10];
char middle_initial[1];
char address_data_1[25];
char address_data_2[20];
char city[20];
char state[2];
char postal_code[5];
char sex[1];
date_type birthday;
char status_code[1];

} transaction_data;

LogMiner for Rdb 7–15

void employees_callback (unsigned int data_len, transaction_data data_buf)
{ .

.

.
return;}

Use the C compiler (either VAX C or DEC C) to compile this module. When
linking this module, the symbol EMPLOYEES_CALLBACK needs to be
externalized in the sharable image. Refer to the OpenVMS manual discussing
the Linker utility for more information about creating sharable images.

On OpenVMS Alpha systems, you can use a LINK command similar to the
following:

$ LINK /SHARABLE = EXAMPLE.EXE EXAMPLE.OBJ + SYS$INPUT: /OPTIONS
SYMBOL_VECTOR = (EMPLOYEES_CALLBACK = PROCEDURE)
<Ctrl/Z>

On OpenVMS VAX systems, you can use a LINK command similar to the
following:

$ LINK /SHARABLE = EXAMPLE.EXE EXAMPLE.OBJ + SYS$INPUT: /OPTIONS
UNIVERSAL = EMPLOYEES_CALLBACK
<Ctrl/Z>

7.8.3 Using LogMiner and the RMU Load Command to Replicate Table Data
You can use triggers and a transaction table to construct a method to replicate
table data from one database to another using RMU Unload After_Journal and
RMU Load commands based on transactional changes to the source table. This
data replication method requires no programming. Instead, existing features of
Oracle Rdb can be combined to provide this functionality.

For this example, consider a simple customer information table called CUST with
a unique customer ID value, customer name, address, and postal code. Changes
to this table are to be moved from an OLTP database to a reporting database
system on a periodic (perhaps nightly) basis.

First, in the reporting database, a customer table of the same structure as the
OLTP customer table is created. In this example, this table is called RPT_CUST.
It contains the same fields as the OLTP customer table called CUST.

SQL> CREATE TABLE RPT_CUST
CUST_ID INTEGER,
CUST_NAME CHAR (50),
CUST_ADDRESS CHAR (50),
CUST_POSTAL_CODE INTEGER);

Next, a temporary table is created in the reporting database for the LogMiner
extracted transaction data from the CUST table. This temporary table definition
specifies ON COMMIT DELETE ROWS so that data in the temporary table is
deleted from memory at each transaction commit. A temporary table is used
because there is no need to journal changes to the table.

7–16 LogMiner for Rdb

SQL> CREATE GLOBAL TEMPORARY TABLE RDB_LM_RPT_CUST (
RDB$LM_ACTION CHAR,
RDB$LM_RELATION_NAME CHAR (31),
RDB$LM_RECORD_TYPE INTEGER,
RDB$LM_DATA_LEN SMALLINT,
RDB$LM_NBV_LEN SMALLINT,
RDB$LM_DBK BIGINT,
RDB$LM_START_TAD DATE VMS,
RDB$LM_COMMIT_TAD DATE VMS,
RDB$LM_TSN BIGINT,
RDB$LM_RECORD_VERSION SMALLINT,
CUST_ID INTEGER,
CUST_NAME CHAR (50),
CUST_ADDRESS CHAR (50),
CUST_POSTAL_CODE INTEGER) ON COMMIT DELETE ROWS;

For data to be populated in the RPT_CUST table in the reporting database, a
trigger is created for the RDB_LM_RPT_CUST transaction table. This trigger
is used to insert, update, or delete rows in the RPT_CUST table based on the
transaction information from the OLTP database for the CUST table. The unique
CUST_ID field is used to determine if customer records are to be modified or
added.

SQL> CREATE TRIGGER RDB_LM_RPT_CUST_TRIG
cont> AFTER INSERT ON RDB_LM_RPT_CUST
cont>
cont> -- Modify an existing customer record
cont>
cont> WHEN (RDB$LM_ACTION = ’M’ AND
cont> EXISTS (SELECT RPT_CUST.CUST_ID FROM RPT_CUST
cont> WHERE RPT_CUST.CUST_ID = RDB_LM_RPT_CUST.CUST_ID))
cont> (UPDATE RPT_CUST SET
cont> RPT_CUST.CUST_NAME = RDB_LM_RPT_CUST.CUST_NAME,
cont> RPT_CUST.CUST_ADDRESS = RDB_LM_RPT_CUST.CUST_ADDRESS,
cont> RPT_CUST.CUST_POSTAL_CODE = RDB_LM_RPT_CUST.CUST_POSTAL_CODE
cont> WHERE RPT_CUST.CUST_ID = RDB_LM_RPT_CUST.CUST_ID)
cont> FOR EACH ROW
cont>
cont> -- Add a new customer record
cont>
cont> WHEN (RDB$LM_ACTION = ’M’ AND NOT
cont> EXISTS (SELECT RPT_CUST.CUST_ID FROM RPT_CUST
cont> WHERE RPT_CUST.CUST_ID = RDB_LM_RPT_CUST.CUST_ID))
cont> (INSERT INTO RPT_CUST VALUES
cont> (RDB_LM_RPT_CUST.CUST_ID,
cont> RDB_LM_RPT_CUST.CUST_NAME,
cont> RDB_LM_RPT_CUST.CUST_ADDRESS,
cont> RDB_LM_RPT_CUST.CUST_POSTAL_CODE))
cont> FOR EACH ROW
cont>
cont> -- Delete an existing customer record
cont>
cont> WHEN (RDB$LM_ACTION = ’D’)
cont> (DELETE FROM RPT_CUST
cont> WHERE RPT_CUST.CUST_ID = RDB_LM_RPT_CUST.CUST_ID)
cont> FOR EACH ROW;

Within the trigger, the action to take (for example, to add, update, or delete a
customer record) is based on the RDB$LM_ACTION field (which will be defined
as D or M) and the existence of the customer record in the reporting database.
For modifications, if the customer record does not exist, it is added; if it does
exist, it is updated. For a deletion on the OLTP database, the customer record is
deleted from the reporting database.

LogMiner for Rdb 7–17

The RMU Load command is used to read the output from LogMiner for Rdb and
load the data into the temporary table where each insert will result in the trigger
executing. The Commit_Every qualifier is used to avoid filling memory with the
customer records in the temporary table because as soon as the trigger executes,
the record in the temporary table is no longer needed.

$ RMU /UNLOAD /AFTER_JOURNAL OLTP.RDB OLTP.AIJBCK -
/TABLE = (NAME = CUST,

OUTPUT = CUST.DAT,
RECORD_DEFINITION = RDB_LM_RPT_CUST.RRD)

$ RMU /LOAD REPORT_DATABASE.RDB RDB_LM_RPT_CUST CUST.DAT -
/RECORD_DEFINITION = FILE = RDB_LM_RPT_CUST.RRD -
/COMMIT_EVERY = 1000

7.8.4 Using LogMiner to Minimize Application Downtime for Maintenance
Lengthy offline application or database maintenance operations can pose a
significant problem in high-availability production environments. The LogMiner
for Rdb feature can help reduce the length of downtime to a matter of minutes.

If a back up of the database is used for maintenance operations, the application
can continue to be modified during lengthy maintenance operations. Once the
maintenance is complete, the application can be shut down, the production
system .aij file or files can be backed up, and LogMiner for Rdb can be used to
extract changes made to production tables since the database was backed up.
These changes can then be applied (using an application program or the trigger
technique previously described) to the new database. Once the new database has
been updated, the application can be restarted using the new database.

The sequence of events required would be similar to the following:

1. Perform a full online, quiet-point database backup of the production database.

2. Restore the backup to create a new database that will eventually become the
production database.

3. Perform maintenance operations on the new database. (Note that the
production system continues to run.)

4. Perform an online, quiet-point after-image journal backup of the production
database.

5. Use the RMU Unload After_Journal command to unload all database tables
into individual output files from the .aij backup file.

6. Using either the trigger technique or an application program, update the
tables in the new database with the changed data.

7. Shut down the production application and close the database.

8. Perform an offline, quiet-point after-image journal backup of the production
database.

9. Use the RMU Unload After_Journal command to unload all database tables
into individual output files from the .aij backup file.

10. Using either the trigger technique or an application program, update the
tables in the new database with the changed data.

11. Start an online, quiet-point backup of the new database.

12. Change logical names or the environment to specify the new database root file
as the production database.

7–18 LogMiner for Rdb

13. Restart the application on the new database.

Depending on the amount of application database activity, steps 4, 5, and 6 can be
repeated to limit the amount of data that needs to be applied (and the amount of
downtime required) during the final after-image journal backup and apply stage
in steps 8, 9, and 10.

7.8.5 Using an OpenVMS Pipe
You can use an OpenVMS pipe to pass data from the RMU Unload After_Journal
command to another application (for example, RMU Load). Do not use any
options (such as the Log or Verify qualifiers) that could cause LogMiner to send
extra output to the SYS$OUTPUT device, as that information would be part of
the input data source stream to the next pipeline segment.

You may find that the OpenVMS default size of the pipe is too small if the records
being extracted (including LogMiner fields) are larger than 256 bytes. If the pipe
is too small, increase the SYSGEN parameters MAXBUF and DEFMBXMXMSG,
and then reboot the system.

The following example uses LogMiner for Rdb to direct output to an OpenVMS
pipe device and uses RMU Load to read the pipe device as the input data record
stream. Using the pipeline allows parallel processing and also avoids the need for
an intermediate disk file. Note that you must have created the record definition
(.rrd) file prior to executing the command.

$ PIPE (RMU /UNLOAD /AFTER_JOURNAL OLTP.RDB AIJ1.AIJ -
/TABLE = (NAME = MYTBL, OUTPUT = SYS$OUTPUT:)) -

| (RMU /LOAD REPORTS.RDB MYLOGTBL SYS$PIPE: -
/RECORD_DEFINITION = FILE = MYLOGTBL.RRD)

LogMiner for Rdb 7–19

A
Implementing Row Cache

A.1 Overview
A.1.1 Introduction

Oracle Rdb uses buffers to temporarily store database pages during read and
update operations. When you create or modify a database, you can set up buffers
for database pages in either of the following ways:

• Local Buffers

Database users have their own set of private local database page buffers.
Data of interest is read from disk into a local database page buffer. Local
buffers are not shared among users. Sharing occurs only when a database
page is written back to disk and another user retrieves that database page.
The sharing is done at the physical page level and can be I/O intensive.

• Global Buffers

Database users on the same system share a common set of global database
page buffers that reside in global memory. Database pages that are read
from disk by one user can be seen directly by another user. Little or no I/O is
needed to share global buffers; however, sharing data is still done at the level
of database page buffers. A database page buffer has a fixed size across all
storage areas in the database. The amount of data in a database page buffer
that is of interest to multiple users may be small compared to its overall size.
Although this model may be more efficient than using local buffers, there are
better ways to share data among users.

Oracle Rdb offers a feature called row caching to enhance the performance
of memory buffers. Because row caching is a cache of rows, you can use it in
conjunction with local or global database page buffers. Please consider, however,
that when using both global buffers and row cache, you could have two copies
of data consuming your global memory—one copy in the row cache and one in a
global buffer. Note also that row caches are not designed to be an ‘‘in-memory
database’’. As its name implies, a row cache is a set of database rows that reside
in memory between the users and the rest of the database rows on disk. Data
rows, system records, as well as hashed and sorted index nodes, can be cached.
Access to a row in a row cache is through its logical database key (dbkey).

All processes attached to a database share a pool of row occurrences that reside in
shared memory row caches. No disk I/O is needed to share a row in a row cache.
Only the rows of interest, not the physical pages, are kept in shared memory,
thereby increasing the use of shared memory. In addition, you can create many
row caches, each with its own row size. Row caches can be used to efficiently
store rows of specific sizes from specified tables. The Oracle Rdb implementation
of row caches gives you the option to specify portions of row caches to occupy
process private virtual memory, shared global pagefile sections on OpenVMS
systems, or shared physical main memory. Oracle Rdb row caching also allows

Implementing Row Cache A–1

you to use very large memory (VLM) on OpenVMS Alpha systems. Subsequent
sections provide more detail on each of these options.

The row caching feature is designed to improve performance through reduced I/O
operations by finding rows of interest in the row cache instead of accessing them
on disk. The greater number of times the data is located in the row cache, the
more useful the cache is and better overall performance results.

The next section describes how row caching works with basic Oracle Rdb database
functions.

A.1.2 Database Functions Using Row Cache
The following list describes how common database operations use the row caching
feature.

• Fetching Data

When you request a row from a database, Oracle Rdb first checks to see if the
requested row is located in a row cache. If the row is in a row cache, the row
is retrieved from the cache. If the row is not in a cache, Oracle Rdb checks
the page buffer pool. If the row is not in the page buffer pool, Oracle Rdb
performs a disk I/O operation to retrieve the row. The requested row is then
inserted into the row cache, if possible.

• Storing Data

When a new row is stored in the database, Oracle Rdb may perform a disk
I/O operation to find space for the new row and get a dbkey for the row. Once
space has been reserved on a database page, Oracle Rdb checks for a row
cache in which to put the new row. The new row is inserted into a row cache,
if possible.

• Modifying Data

If a modification to a row in a cache causes the row to grow (replaces a null
value, for example), then the database page must be modified to reserve
additional space for that row. If the database page does not have room for
the modified row, resulting in fragmentation, then the row is deleted from the
cache. If the modification keeps the row the same size or makes it smaller,
then the modified row remains in the cache and no database page is accessed.
This means that the unused space on the page is not reclaimed and hence is
not immediately available for reuse. Compressed rows and indexes that are
modified are more likely to require database access than uncompressed ones.

• Deleting Data

If the row is in a row cache, Oracle Rdb sets the length of the row to zero
to erase it. It is not erased from the database page on disk immediately.
Therefore, the deleted space is not reusable immediately.

• When snapshots are enabled

During a read-only transaction, Oracle Rdb first checks to see if the row is
in a row cache. If the row is found and is visible to the transaction, the row
is returned from the row cache and no disk I/O operation is necessary. If the
row is not visible, Oracle Rdb must find the visible version of this row in the
snapshot file. Information stored in the row cache, however, can shorten the
search and thereby reduce I/O operations to the snapshot file.

A–2 Implementing Row Cache

During a read/write transaction that is performing an update, Oracle Rdb
writes the before-image of the data to the snapshot file. Oracle Rdb writes the
before-image information out to the snapshot file each time a row in the user’s
row cache working set is modified. If a row falls out of the working set list
and is remodified later in the transaction, the before-image information is
written back to the snapshot file when the row re-enters the working set.

Global and local buffers use the least-recently used (LRU) replacement
strategy for database pages. Row caching uses a modified form of the LRU
replacement strategy. Each database user can protect the last 10 rows they
accessed. This group of rows is referred to as a working set. Rows that
belong to a working set are considered to be referenced and are not eligible
for row replacement.

During a read/write transaction that performs a delete operation, the
processing is the same as described in the previous paragraphs.

A.1.3 Writing Modified Rows to Disk
With row caching, many data modifications are performed on the in-memory
copy of the data. Therefore, Oracle Rdb must have a way to write these rows to
storage on disk.

The following list describes the ways that modified rows can be written back to
the database page on disk.

• If the page on which a modified row resides is in the user’s buffer pool and
is already locked by the user when the update to that row must be recorded
in the row cache, then the update is made to the row in the cache and on the
database page.

In this case, the row cache entry is not considered to be marked or modified.
This situation occurs when a transaction is committed or when a row is
flushed from a row cache.

• During an undo operation, the before-image of each modified row is placed on
the database page.

An undo operation occurs as part of an aborted SQL statement, transaction
rollback, or database recovery of a terminated user’s process.

• During a redo operation, the after-image of each modified row is stored on
the database page only if recovering from a node failure. If recovering from
a process failure, no redo is done for in-memory row cache modifications
because the row cache memory is still valid and intact. (Changes made to
database pages are still redone.)

• During a row cache checkpoint operation, all modified rows (or all rows) from
the row caches are written to disk storage.

This is the most common method of writing updated rows back to disk
storage.

• During a row cache sweep operation, a set of modified rows are written back
to the database from the row cache. After the rows are written back to disk,
the space they occupied is considered selectable for reuse.

A row cache sweep operation is initiated when a user process tries to insert
rows into a row cache and finds no free space available.

Implementing Row Cache A–3

A.1.4 Row Cache Checkpointing and Sweeping
Checkpointing and sweeping operations are critical in performing the operations
necessary to write modified, committed rows back to disk from a row cache. The
row cache server (RCS) process performs these tasks. There is one RCS process
per database. Any failure of the RCS process forces the shutdown of the entire
database.

To monitor the status of rows in a row cache, Oracle Rdb maintains a modification
flag for every row in a cache to indicate which rows have been modified. The
modification flags are shown in the following table:

Modification Flag Meaning

Marked The row has been modified in the row cache only. If this
modification remains only in the row cache at the time the
transaction is committed, then this marked flag indicates this
row in the row cache is not reflected in the database.

Hot The marked row has been modified since the last checkpoint.

Cold The marked row has not been modified since the last
checkpoint.

The RCS process performs three types of operations:

• Synchronous operations where the requester is waiting for the operation to
complete

The following are operations of this type:

• The RCS process checkpoint operation that is part of an AIJ fast-commit
checkpoint

For example, if the RMU Checkpoint command with the Wait qualifier is
issued, then the requester will wait for the RCS process to complete its
checkpoint.

• A checkpoint to the database for all row caches before certain database
utility operations can begin

• Row cache checkpoint operations

Checkpointing is a repetitive, time-driven event that writes rows from all row
caches back to disk storage. The RCS process writes data to a cache backing
file (.rdc) or directly to the database for each cache, depending on how the
row cache was defined. The time interval at which a checkpoint occurs is
also programmable. When the last user detaches from the database, the RCS
process performs a final checkpoint operation to the database (never to the
cache backing files). See Section A.4.2.1 for more details.

• Row cache sweep operations

Sweeping is done to make space available in a particular row cache. When
a transaction requests space and none is available, the RCS process sweeps
marked rows back from the particular row cache to the database. It also
resets row cache reference counts if your database has experienced some user
process failures. This creates free memory for subsequent transactions to
insert rows into each cache. This may never be necessary if checkpointing is
done at appropriate intervals. See Section A.4.2.3 for more details.

The RCS process selects work requests based on their priority; synchronous
operations are checked first, then checkpoints, followed by sweep operations.

A–4 Implementing Row Cache

If a database is opened manually, the RCS process is started as part of the open
operation. If a database is opened automatically, the RCS, by default, is started
when a row cache is referenced for the first time.

When the last user disconnects from the database (with the database open setting
set to automatic) or when the database is closed manually, the RCS process
performs a final checkpoint to the database. When this operation completes, all
marked rows have been written back to the database. The RCS process writes
out its checkpoint information to indicate that backing files are no longer needed
if there is a need to recover from a node failure. At this time, the cache backing
files, if any, are deleted by default. If you want to preserve the backing files and
have them be reused at database startup, define the logical RDM$BIND_RCS_
KEEP_BACKING_FILES to ‘‘1’’.

Details of the RCS actions can be seen by creating an RCS process log file. Before
opening the database, define the RDM$BIND_RCS_LOG_FILE system logical
name to indicate the device, directory, and file name of the RCS process log file
you want to create. If no device and directory are specified, the RCS log file is
created in the same directory as that which contains the database root file.

A.1.5 Node and Process Failure Recovery
The following sections describe how the row cache feature interacts with node
and process failure recovery.

To understand how database recovery works with row caches, you should
understand the interactions that occur when writing to row caches, writing to
the recovery-unit journal (RUJ) files, and writing to the after-image journal (AIJ)
files. This interaction is identical to the interactions that occur among database
page buffers, RUJ journaling, and AIJ journaling. For more information, see the
Oracle Rdb Guide to Database Performance and Tuning.

The AIJ fast commit feature is a prerequisite for enabling row caching. This
means that updates to the database are not flushed back to the database pages
at the time a transaction is committed. In the case of row caching, the modified
rows reside in the in-memory row caches. However, all after-image (updated
rows) must be flushed to the AIJ file when the transaction is committed. In the
event of a failure, the committed, updated rows can be reapplied to the database
from the AIJ file.

Recovery-unit journaling is critical in ensuring that rows can be returned to their
previous state when either a SQL statement or transaction rolls back or aborts
abnormally. A row’s before-image must be preserved BEFORE any modification is
made to a row on a database page or in a row cache. Before-images are placed in
an in-memory RUJ buffer. Only when that buffer becomes full or when a modified
page or modified row cache entry is being put back must the RUJ information
first be synchronously written to the RUJ file. For a database without row caches,
this means the write IO to the RUJ file must be performed before a database page
containing a modified row can be written to disk.

With row caches, Oracle Rdb is frequently modifying only memory, not database
pages. The requirement for RUJ information being written BEFORE a
modification is put back into the row cache still exists. Writing synchronous
IOs to the RUJ before modifying in-memory row caches doesn’t make muct sense.
Oracle Rdb minimizes this behavior in two ways:

• A modification to a row cache entry is first done in a local copy. Only when
this local copy of the row must be flushed back to the row cache is the RUJ
information written out.

Implementing Row Cache A–5

• The RUJ buffer resides in a system-wide, shared memory global section that
is visible to the DBR process. Therefore the before-image rows don’t have to
be written to the RUJ file unless an uncommitted modification to a database
page (a store or a modify bigger operation) is forced to disk or when the RUJ
buffer overflows.

The global section created for the RUJ buffers will be about 256 VAX pages or 16
Alpha pages for each allowed user of a database. One global section is created
for each database that has row caching enabled. To disable this optimization for
databases with row caching enabled, define the logical name RDM$BIND_RUJ_
GLOBAL_SECTION_ENABLED to ‘‘0’’ in the system logical name table.

You need to increase several OpenVMS system parameters, as follows:

• GBLSECTIONS

Increase by the maximum number of Oracle Rdb databases open at one time
on the system.

• GBLPAGES

Increase by 256 times the maximum number of users for each database open
at one time on the system.

• GBLPAGFIL

Increase by 256 (on OpenVMS VAX systems) or by 16 (on OpenVMS Alpha
systems), times the maximum number of users for each database open at one
time on the system.

There is no additional virtual memory consumption for database users when the
RUJ global buffers optimization is enabled; each user process continues to use
the same amount of virtual memory (256 blocks) as when the optimization is not
enabled.

Databases that do not have row caching enabled will not have optimization
enabled for the RUJ buffer in a global section.

A.1.5.1 Process Failure
When a process terminates abnormally, Oracle Rdb activates a database recovery
(DBR) process to recover the work done by the terminated user. The DBR
process first performs transaction REDO, reapplying committed transactions’
modifications to the database pages that had only been written to the AIJ file
back to the database. Because the row cache memory is still in tact, in-memory
row cache changes do not have to be redone during REDO. The DBR process then
proceeds to UNDO the user’s outstanding transaction. If the RUJ system-wide
process buffers are enabled, the DBR process first writes the current RUJ buffer
to the RUJ file. It then recovers the RUJ file by placing the before-image of each
row back on the database page. If the dbkey for that row is also found in a row
cache, the before-image is placed back into the row cache too.

A.1.5.2 Node Failure
There are several events that constitute node failure to Oracle Rdb:

• Machine or operating system fails

• The Oracle Rdb monitor process terminates unexpectedly

• The Oracle Rdb RCS process terminates unexpectedly

• An Oracle Rdb DBR process terminates unexpectedly

• The RMU Monitor Stop command is issued with the Abort=delprc qualifier

A–6 Implementing Row Cache

• The RMU Close command is issued with the Abort=delprc qualifier

All of these events cause all access to an Oracle Rdb database to cease
immediately. Recovery from a node failure event is deferred until the next time
the database is attached or opened. Even if the RMU Open command with the
Row_Cache=disabled qualifier is executed next, this will initiate recovery from
the node failure. It will not create nor populate the in-memory row caches during
the recovery. Once recovery has finished, no row caches will be active while the
database stays open in this manner.

Oracle Rdb has several schemes for recovering a database after a node failure.
For a database without row caching enabled and without global buffers enabled,
Oracle Rdb recovers from a node failure by creating one DBR process for each
abnormally terminated user and these DBR processes recover the database in
parallel. For a database without row caching enabled but with global buffers
enabled, Oracle Rdb recovers one database user at a time by creating one DBR
process at a time. For a database with row caching enabled, Oracle Rdb creates
one DBR process and that process performs recovery for all the users.

For recovery from a node failure for a database with row caching enabled, the
DBR process performs recovery in the following steps.

1. Recovers the backing files. For each row cache that is checkpointed to a
backing file, the DBR process:

Reads each row from the backing file.

If the row has been updated (marked), then the DBR process writes this
row back to the appropriate database page.

Inserts this row into the empty row cache in shared memory. If the
database is opened with row caching disabled or if the system logical
name RDM$BIND_DBR_UPDATE_RCACHE is defined to ‘‘0’’, then the
row caches are not repopulated from the backing files.

Places this dbkey in a row cache dbkey list.

2. Performs a REDO operation from the oldest user checkpoint. This includes
the RCS process checkpoint when the RCS process last checkpointed the row
caches.

For each transaction rolled back, the DBR process discards the updates.

For each transaction committed, the DBR process reapplies those updates
to the database pages.

Please note that ALL committed transactions since the oldest
checkpoint are applied, not just all committed transactions for
the users who were active at the time of the node failure.

If DBR is re-populating the row caches and this dbkey is found in the row
cache dbkey list, then this occurrence replaces the current one in the row
cache. If a row in a mixed format area is erased, it is removed from the
row cache and its dbkey is removed from the dbkey list. This is necessary
to prevent the physical dbkey that may be reused for a different table or
index from being placed in the prior occurrence’s row cache.

Once the redo operation is completed, the DBR process updates all users’
checkpoints to be the current AIJ end-of-file.

Implementing Row Cache A–7

3. Performs the UNDO operation for each aborted user’s incomplete transaction,
if any. The DBR process reads the before-images from the user’s RUJ file and
writes them back to the database. If the dbkey also exists in a row cache,
then the before-image is also written to its row cache entry.

A.1.5.3 The RCS Process and Database Recovery
Because the RCS process and the DBR process both access the row cache
structures, they must coordinate their activities. When a DBR process is
activated, it immediately notifies the RCS process of its existence using a lock.
Then the RCS process aborts whatever request it is performing, requeues the
request at the head of the appropriate queue, and waits for the database recovery
activity to complete. Upon completion of database recovery, the RCS process
resumes its operations by executing the next operation based on priority.

A.1.6 Considerations When Using the Row Cache Feature
This section contains further information on using the row cache feature.

• Hot Standby

Row caching is not allowed to be active on the standby database. Because
the AIJ file does not contain logical dbkeys, there is no way to maintain rows
in the cache on the standby system. On the standby system, issue the RMU
Open command with the Row_Cache=Disabled qualifier to open the database
without activating row caching. If failover is necessary, simply close the
standby database and reopen it normally. Your standby database will have
row caches activated.

• Backing files

If you are using row cache backing files, then do not use Hot Standby on the
same machine as the master database. Both databases will attempt to use
the same backing files.

Similarly, do not attempt to use the same directory location for backing files
for two or more databases if any of their row cache names are identical.
Multiple databases will attempt to use the same backing files.

• Utilities that access the database pages directly

Some RMU commands do not access data by logical dbkey but instead read
the database pages directly. These commands cannot access the row caches
directly. Oracle Rdb resolves this problem by having each command request
the RCS process write all marked rows back to the database. The RMU
operation waits for this task to complete.

The RMU commands affected by this are:

Backup online

Analyze

Verify

Copy database online

These operations may exhibit a delay in starting. If you specify the RMU log
qualifier, Oracle Rdb will output a message when it is waiting for the RCS
request and when the RCS request has completed. If your database’s row
caches are set to checkpoint to the database rather than to backing files, then
this delay will be minimized.

• Sequential scans

A–8 Implementing Row Cache

When the execution strategy for a query is a sequential scan, Oracle Rdb
scans the physical areas by performing the same I/O operations it would do if
there were not any row caches. The major reasons for this are as follows:

Oracle Rdb does not have a list of all dbkeys in an area; it materializes
them by reading all pages and examining all lines on each page. However,
data is returned from the row cache if it is found there. Although Oracle
Rdb reads the database pages to find the dbkeys of rows in the table, it
still needs to look in the cache to see if the row is there. A row in the
cache contains more recent data than that which is on disk.

There is no guarantee that all rows in a sequential scan can fit in a row
cache. Row caches are often sized to include a percentage of the total
number of rows where the most commonly used rows can be shared in
memory.

Oracle Rdb is designed to avoid populating the cache during a strict
sequential scan. It is designed this way because otherwise a query
performing a sequential scan of a table looking for just a few records
would fill the cache with every record and might force existing data in the
cache back to disk. This would result in a row cache filled with records
that you do not need in the cache.

However, note that a sequential index scan will populate the cache with
data, index rows, or both.

• Snapshots enabled

The Oracle Rdb snapshot mechanism of preserving a consistent view of the
database for read-only transactions is not changed by the row cache feature.
The before-images of rows needed by read-only transactions are preserved
when read/write transactions write them to the snapshot files. Therefore,
when snapshots are enabled, update operations are written to the rows in
the row cache and the before-image of the row is written to disk. Oracle Rdb
has optimized the snapshot mechanism with row caches, however, so that
the performance of readers and writers may be better with row caches than
without.

The performance of row caches is typically much faster when snapshots are
disabled. All of the disk I/O operations necessary to read and write to the
snapshot file are eliminated. This is the ideal situation.

• Fragmented rows

Fragmented rows are not stored in the row cache. They are created by
fetching the fragments from the database and materializing them in process-
private virtual memory.

• Vertical record partitioning

When a logical cache is defined for a vertically partitioned table, each
partition of a row is cached as a separate row cache entry. Only partitions
that your query references and that can fit are inserted into the row cache.

• Unexpected storage area growth

Oracle Rdb has optimized row caching to minimize the disk I/O operations
required. Frequently operations are performed in-memory only. Having the
faster performance of in-memory updates is beneficial. However, when you
make modifications that keep a row at its current size or smaller, or you make
deletions, the database page does not reflect the amount of space that is in
use. Even though the row is logically smaller or erased from the database,

Implementing Row Cache A–9

it has not been physically removed from the database page. The space it
occupies cannot be reused by another transaction until this row is finally
written back to the database, usually by the RCS process during a sweep
or checkpoint operation, depending on your row cache settings. Because of
this, storage areas may grow larger than anticipated. If space reclamation is
critical for some storage areas, then consider checkpointing their row caches
to the database on a regular basis.

A.2 Requirements for Using Row Caches
To use the row cache feature, an Oracle Rdb database must meet the following
configuration requirements:

• The number of cluster nodes must be one.

• After-image journaling must be enabled.

• Fast commit must be enabled.

• One or more row cache slots must be reserved.

• Row caching must be enabled.

Use the RMU Dump command with the Header qualifier to see if you have met
the requirements for using row caches. In the following example, warnings are
displayed for row cache requirements that have not been met.

$ RMU/DUMP/HEADER INVENTORY
.
.
.

Row Caches...
- Active row cache count is 4
- Reserved row cache count is 20
- Checkpoint information

Time interval is 10 seconds
Default source is updated rows
Default target is backing file
Default backing file directory is "DISK1:[CACHE]"

- WARNING: Maximum node count is 16 instead of 1
- WARNING: After-image journaling is disabled
- WARNING: Fast commit is disabled

.

.

.

A.3 Designing and Creating a Row Cache
The following sections describe considerations for designing and creating row
caches.

A.3.1 Reserving Slots for Row Caches
When you create a database, reserve enough row cache slots for both current
and future needs. To reserve additional slots and to add or drop a row cache, the
database must be closed.

Use the RESERVE n CACHE SLOTS clause of the CREATE DATABASE or
ALTER DATABASE statement to reserve slots for row caches, as shown in the
following example:

A–10 Implementing Row Cache

SQL> CREATE DATABASE FILENAME INVENTORY
.
.
.

cont> RESERVE 20 CACHE SLOTS;

If you do not specify a RESERVE n CACHE SLOTS clause, Oracle Rdb reserves
one slot by default.

A.3.2 Row Cache Types
The two types of row caches are described in the following list:

• Physical area

You can create a general row cache that is shared by all row types that reside
in one or more storage areas. This is the basic type of row cache, called a
physical area row cache. Because physical area row caches are defined for
a storage area, multiple storage areas can map to the same physical area row
cache. A physical area row cache can contain all row types in a storage area.
In addition, when a physical area row cache is defined, all rows of different
sizes in the specified storage area are candidates for the row cache.

See Section A.3.2.1 for an example of how to assign a row cache to a storage
area.

• Logical area

You can create logical area row caches when you create a row cache by using
the same name as an existing table or index. A logical area row cache is
associated with all partitions, both horizontal and vertical, of a specific table
or index.

A logical area cache cannot store the system row from a database page in an
mixed format area.

You can use both physical and logical caches to store a table and its index.

The following example shows the reason for using different caches for different
row types. Assume the following sizes for the rows in a table and hashed index:

• System records of 16 bytes

• Hash buckets of 100 bytes

• Data rows of 320 bytes

If you created one cache for all three row types, with a row size of 320 bytes,
much of the allocated memory would be wasted when storing the smaller system
record and the hash bucket. Using this method, the amount of memory, excluding
overhead, used for one row cache is as follows, assuming 15000 rows in the cache:

Total
number = (# of rows in cache * row length of largest row)
of bytes

= (15000 * 320)

= 4800000 bytes

It is more efficient to have three caches, one for each of the row types:

• System records of 16 bytes (PARTS_SYS cache)

• Hash buckets of 100 bytes (PARTS_HASH cache)

• Data rows of 320 bytes (PARTS cache)

Implementing Row Cache A–11

In this example the system records are stored in a physical cache (PARTS_SYS)
while the hash index buckets and data rows are stored in logical caches (PARTS_
HASH and PARTS).

The amount of memory, excluding overhead, used with three row caches is
computed as follows:

Total
number = (# of rows in cache * row length of system record) +
of bytes (# of rows in cache * row length of hash bucket) +

(# of rows in cache * row length of data row)

= (5000 * 16) +
(5000 * 100) +
(5000 * 320)

= 2180000 bytes

A.3.2.1 Assigning Storage Areas to Row Caches
When a storage area is associated with a row cache, the row cache can contain
all types of rows, if they can fit. This is called a physical area row cache. One
storage area can point to one row cache only. Multiple storage areas can be
mapped to the same row cache.

You can also define a default row cache for all of the storage areas in the database
by using one of the following statements:

• ALTER DATABASE ... ADD STORAGE AREA ... CACHE USING

• ALTER DATABASE .. ALTER STORAGE AREA ... CACHE USING

• CREATE DATABASE ... CREATE STORAGE AREA ... CACHE USING

The following example shows how to assign the same physical row cache to
multiple storage areas:

SQL> ALTER STORAGE AREA
cont> PART_ID_A_E CACHE USING PARTS_SYS;
SQL> ALTER STORAGE AREA
cont> PART_ID_F_K CACHE USING PARTS_SYS;

A.3.2.2 Assigning Tables to Row Caches
A row cache is considered to be a logical area cache if its name is identical to
the name of either a table or an index. If a logical area row cache is created for
a vertically or horizontally partitioned table or horizontally partitioned index,
then all rows in these partitions are mapped to the single logical area row cache.
In the following example, a logical area cache called PARTS is created for the
PARTS table that is horizontally partitioned across five storage areas:

A–12 Implementing Row Cache

SQL> CREATE STORAGE MAP PARTS_MAP FOR PARTS
cont> --
cont> -- Parts table partitioned by part_id
cont> --
cont> STORE USING (PART_ID)
cont> IN PART_ID_A_E WITH LIMIT OF (’F’)
cont> IN PART_ID_F_K WITH LIMIT OF (’L’)
cont> IN PART_ID_L_P WITH LIMIT OF (’Q’)
cont> IN PART_ID_Q_U WITH LIMIT OF (’V’)
cont> OTHERWISE IN PART_ID_V_Z
cont> PLACEMENT VIA INDEX PARTS_HASH;
SQL>

.

.

.
SQL> ALTER DATABASE FILENAME INVENTORY
cont> ADD CACHE PARTS
cont> ROW LENGTH IS 100 BYTES
cont> CACHE SIZE IS 5000 ROWS;

Rows from all five partitions of the PARTS table are automatically cached in the
PARTS row cache, if they can fit.

A.3.3 Sizing a Row Cache
When you size a row cache, you specify the following:

• Slot Size

The slot size is the fixed length size of each entry in the row cache. This
determines the size of the largest row that can be stored in the row cache.
Oracle Rdb will not cache a row if it is larger than the cache’s slot size. Use
the ROW LENGTH IS parameter of the ADD, ALTER, or CREATE CACHE
clause to specify the slot size of the row cache.

Oracle Rdb automatically rounds up the row length to the next 4-byte
boundary. This is done because longword aligned data structures perform
optimally on its supported platforms.

If you do not specify a slot size when creating a logical cache, Oracle Rdb
generates a slot size based on the size of the table row or index node. Note,
however, that Oracle Rdb finds the nominal row length of tables and indices
using the area inventory page (AIP). Under certain circumstances this AIP
length may not be the actual length of the row. In addition, some index
structures may have no AIP entry at all. If no entry can be found, Oracle
Rdb uses a default length of 256 bytes. Also, if the metadata for a table is
modified, then the AIP length is not automatically updated. This can result
in incorrect cache sizing. See the Oracle Rdb Guide to Database Performance
and Tuning for more details on AIP lengths.

• Slot count

The slot count is the number of rows that can be stored in the cache. Use the
CACHE SIZE IS parameter of the ADD, ALTER, or CREATE CACHE clause
to specify the number of rows that can be stored in the cache.

If you do not specify the CACHE SIZE clause, Oracle Rdb creates a cache of
1000 rows by default.

Implementing Row Cache A–13

The following example shows a row cache definition:

SQL> ADD CACHE PARTS
cont> ROW LENGTH IS 320 BYTES
cont> CACHE SIZE IS 3000 ROWS;
SQL> --
SQL> -- In this example, the slot size is 320 bytes
SQL> -- and the slot count is 3000.
SQL> --

It is important to select a proper slot size for the row cache. As stated previously,
if a row is too large, Oracle Rdb will not cache the row. This can result in poor
system performance because Oracle Rdb always checks the cache for the row
before retrieving the row from disk. Use the RMU Dump Area command to
determine the sizes of the data rows, hash buckets, and B-tree nodes. Keep in
mind that row sizes within a table can vary greatly. If, for example, the largest
row stored in a table is 100 bytes, but the majority of the rows range between 40
and 50 bytes, you may not necessarily want to choose 100 bytes for the slot size.
However, you should account for most of the rows, including overhead. If you
automatically select the largest row size without comparing it to the sizes of the
other rows in the table, you might waste memory.

The following example dumps a few pages from the MY_AREA storage area:

$ RMU/DUMP/AREA=MY_AREA/START=5/END=10 TEST_DB/OUT=rmu_dump_area.out

Search the rmu_dump_area.out file for the occurrences of ‘‘total hash bucket’’ and
‘‘static data’’ as follows:

$ SEARCH RMU_DUMP_AREA.OUT "total hash bucket"

.... total hash bucket size: 97

.... total hash bucket size: 118

.... total hash bucket size: 118

.... total hash bucket size: 118

.... total hash bucket size: 118

.... total hash bucket size: 118

.... total hash bucket size: 118

.... total hash bucket size: 118

.... total hash bucket size: 118

.

.

.
$ SEARCH rmu_dump_area.out "static data"

.... 311 bytes of static data

.... 311 bytes of static data

.... 311 bytes of static data

.... 311 bytes of static data

.... 311 bytes of static data

.... 311 bytes of static data

.... 311 bytes of static data

.... 311 bytes of static data

.... 311 bytes of static data

.... 311 bytes of static data

.... 311 bytes of static data

.... 311 bytes of static data
.
.
.

The hash bucket size is 118 bytes and the data row size is 311 bytes. Other
rows in this table may require more or less space. It is important to scan a
representative sample of random pages to determine the appropriate row size.
Oracle Rdb rounds row sizes up to the next longword.

A–14 Implementing Row Cache

The RMU Show Statistics row caching screens provide performance information
on inserting rows into a cache. One of the statistics, ‘‘row too big’’, indicates that
a row is too large to fit into the specified cache. This statistic is also set when
a row in a row cache becomes invalid and must be retrieved from the database
page. For example, when a row in the row cache grows to the point where it
becomes fragmented, it must be removed from the row cache. This is done by
‘‘redirecting’’ this row out of the row cache to disk, by setting its ‘‘row too big’’
attribute. See Section A.5.1 for more information on the RMU Show Statistics
screens related to row caching.

The slot count multiplied by the slot size specifies the approximate size, in bytes,
of the row cache. You should also take into account additional overhead. See
Section A.3.4.1 for more information about sizing row caches.

A.3.4 Choosing Memory Location
When you create a row cache or modify a row cache definition, you have the
option of specifying where in memory you want Oracle Rdb to create the cache.
Row caches can reside in the following memory locations:

• Process global section on OpenVMS and shared memory partition on Digital
UNIX.

When you use global sections or shared memory created in the process space,
you and other users share virtual memory and the operating system maps a
cache to a private address space for each user.

Use the SHARED MEMORY IS PROCESS parameter to specify that the
cache be created in a process global section or shared memory partition as
shown in the following example:

SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> ADD CACHE EMPIDS_LOW_RCACHE
cont> SHARED MEMORY IS PROCESS;

This is the default.

• System space buffer

The system space global section is located in the OpenVMS Alpha system
space, which means that a system space global section is fully resident, or
pinned in memory and does not affect the quotas of the working set of a
process.

System space is critical to the overall system. System space buffers are not
paged; therefore, they use physical memory, thereby reducing the amount
of physical memory available for other system tasks. This may be an issue
if your system is constrained by memory. You should be careful when you
allocate system space. Nonpaged dynamic pool (NPAGEDYN) and the
VMScluster cache (VCC) are some examples of system parameters that use
system space.

Use the SHARED MEMORY IS SYSTEM parameter to specify that the cache
be created in a system space buffer, as shown in the following example:

SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> ADD CACHE EMPIDS_MID_RCACHE
cont> SHARED MEMORY IS SYSTEM;

Implementing Row Cache A–15

Consider allocating small caches that contain heavily accessed data in system
space buffers. When a row cache is stored in a system space buffer, there is
no process overhead and data access is very fast because the data does not
need to be mapped to user windows. Also, OpenVMS Alpha Version 7 systems
and later make additional system space available by moving page tables and
balance slots into VLM space. The Hot Row Information screen in the RMU
Show Statistics command displays a list of the most frequently accessed rows
for a specific row cache.

• Very large memory

Very large memory (VLM) on OpenVMS Alpha systems allows Oracle Rdb
to use as much physical memory as is available on your system and to
dynamically map it to the virtual address space of database users. VLM
provides access to a large amount of physical memory through small virtual
address windows. Even though VLM is defined in physical memory, the
virtual address windows are defined and maintained in each user’s private
virtual address space or system space depending on the memory setting.

Use the LARGE MEMORY parameter to specify that the cache be created in
large memory.

SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> ADD CACHE EMPIDS_OVER_RCACHE
cont> LARGE MEMORY IS ENABLED;
SQL>

VLM is useful for large tables with high access rates. The only limiting factor
with VLM is the amount of available physical memory on your system.

You view the physical memory through windows. You can specify the number of
window panes with the WINDOW COUNT parameter. By default, Oracle Rdb
allocates 100 window panes to a process.

Table A–1 summarizes the location in memory of each row cache object and
whether process private virtual address windows are needed to access the data.

A–16 Implementing Row Cache

Table A–1 Memory Locations of Row Cache Objects

SHARED LARGE Control Structures Data Rows Windows

PROCESS1 DISABLED3 Process global section
or shared memory
partition

Process global section
or shared memory
partition

No

PROCESS1 ENABLED4 Process global section
or shared memory
partition

Physical memory Yes

SYSTEM2 DISABLED3 System space System space No

SYSTEM2 ENABLED4 System space Physical memory Yes

1SHARED MEMORY IS PROCESS

• The row cache control structures are located in a process global section or shared memory partition.
• The storage of the data rows depends on whether large memory is enabled or disabled.

If large memory is enabled, data is stored in physical memory and windows from each user’s
process virtual address space are needed to access the data.
If large memory is disabled, data is stored in a process global section or shared memory partition
and no windows are needed to access the data.

2SHARED MEMORY IS SYSTEM

• The row cache control structures are stored in system space.
• The storage of the data rows depends on whether large memory is enabled or disabled.

If large memory is enabled, data is stored in physical memory and windows from each user’s
process virtual address space are needed to access the data.
If large memory is disabled, data is stored in system space and no windows are needed to access
the data.

3LARGE MEMORY IS DISABLED

• The storage of the data rows and the row cache control structures depends on whether shared
memory is process or system.

If shared memory is process, the data and row cache control structures are stored in a process
global section or shared memory partition and no windows are needed to access the data.
If shared memory is system, the data and row cache control structures are stored in system
space and no windows are needed to access the data.

4LARGE MEMORY IS ENABLED

• The data rows are stored in physical memory and process private virtual address windows are
needed to access the data.

• The storage of the row cache control structures depends on whether shared memory is process or
system.

If shared memory is process, the control structures are stored in a process global section or
shared memory partition.
If shared memory is system, the control structures are stored in system space.

It is important to consider the amount of memory available on your system before
you start creating and using row caches.

On OpenVMS systems, you can use the DCL command SHOW MEMORY
/PHYSICAL to check the availability and usage of physical memory. This
command displays information on how much memory is used and how much
is free. The free memory is available for VLM row caches in addition to user
applications.

Because VLM row caches can consume a certain amount of system space for their
virtual address windows, Oracle Corporation recommends that you define the
VLM row caches first, so that any VLM system space requirements are satisfied
before you define system space buffer row caches for small tables that contain
frequently accessed data.

Implementing Row Cache A–17

The following example shows a system that has 1.5 gigabytes of memory or a
total of 196608 OpenVMS Alpha memory pages (an OpenVMS Alpha page is 8192
bytes):

$ SHOW MEMORY/PHYSICAL

System Memory Resources on 29-MAY-1996 21:39:35.40

Physical Memory Usage (pages): Total Free In Use Modified
Main Memory (1536.00Mb) 196608 183605 12657 346

Of the 1.5 gigabytes, 183605 pages remain on the free list. Most of this free
memory is available for row cache allocation.

Assume a logical area cache has been defined for the MY_TABLE table. The
following SQL statement maps the logical area cache:

SQL> ATTACH ’FILE TEST_DB’;
SQL> SELECT * FROM MY_TABLE WHERE MY_HASH_INDEX = 100;

By issuing this SQL statement, the logical area cache has allocated the necessary
memory accounting for 40462 OpenVMS Alpha pages, as shown in the following
SHOW MEMORY/PHYSICAL command output:

$ SHOW MEMORY/PHYSICAL

System Memory Resources on 29-MAY-1996 21:46:07.01

Physical Memory Usage (pages): Total Free In Use Modified
Main Memory (1536.00Mb) 196608 143143 52766 699

Notice the amount of free memory has been reduced.

The following SHOW MEMORY/PHYSICAL command was issued after users
attached to the database, allocated their working sets, and began to work:

System Memory Resources on 29-MAY-1996 23:48:06.67
Physical Memory Usage (pages): Total Free In Use Modified
Main Memory (1536.00Mb) 196608 81046 112498 3064

In this example, only 81046 OpenVMS Alpha pages are left on the free list.

A.3.4.1 Sizing Considerations
The following information is intended to help you determine in which memory
location to place your cache based on system resources. Generally, if your cache
will fit into a process global section or system space buffer, then it will perform
slightly better. If space is an issue, then you should place the cache in VLM.

When a cache is created in a process global section or system space buffer, Oracle
Rdb sizes it using the following values:

• Each slot requires 48 bytes plus the length of the slot rounded to the next
4-byte boundary.

• Each cache requires a hash table of (4 * (the number of cache slots rounded to
the next higher power of 2)) bytes.

• Each cache requires (24 * the maximum number of users) bytes.

When a cache is created in VLM, Oracle Rdb sizes it using the following values:

• Each slot requires 24 bytes plus the length of the slot rounded up to the next
4-byte boundary.

A–18 Implementing Row Cache

When VLM is enabled and the cache is created in a process global section or
system buffer space, Oracle Rdb sizes it using the following values:

• Each slot requires 24 bytes.

• Each cache requires a hash table of (4 * (the number of cache slots rounded
up to the next higher power of 2)) bytes.

• Each cache requires (24 * the maximum number of users) bytes.

The following example shows how Oracle Rdb sizes a cache containing 150,000
slots with a slot size of 500 bytes in a process global section or system space
buffer and a maximum of 350 users. (Note that 2 to the 17th power is 262144.)

Example A–1 Sizing a Row Cache in a Global Section or System Space Buffer

Total
number = (150000*(500+48)) + (262144*4) + (24*350)
of
bytes

= 83,256,976 bytes

The following example shows how Oracle Rdb sizes the same cache in VLM.

Example A–2 Sizing a Row Cache in VLM

Total
number = (150000*(500+24))
of
bytes

= 78,600,000 bytes

The following example shows how Oracle Rdb sizes the same cache in a process
global section or system space buffer with VLM enabled.

Example A–3 Sizing a Row Cache in Memory with VLM Enabled

Total
number = (150000*24) + (262144*4) + (24*350)
of
bytes

= 4,656,976 bytes

A.4 Using Row Cache
The following sections describe how to set parameters for the row cache feature.

Implementing Row Cache A–19

A.4.1 Enabling and Disabling Row Cache
There are three ways in which Row Caching can be enabled and/or disabled.

1. You can enable row caching for a database by using the ROW CACHE IS
ENABLED clause of the SQL ALTER DATABASE and CREATE DATABASE
statements. The following example shows how to enable the row cache
feature and its requirements:

SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> NUMBER OF CLUSTER NODES IS 1
cont> JOURNAL ENABLED (FAST COMMIT ENABLED)
cont> RESERVE 20 CACHE SLOTS
cont> ROW CACHE IS ENABLED;

You can disable row caching for a database by using the ROW CACHE IS
DISABLED clause of the SQL ALTER DATABASE and CREATE DATABASE
statements:

SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> ROW CACHE IS DISABLED;

Row caching is also disabled if one of the conditions described in Section A.2
becomes false.

When row caching is disabled, all previously created and assigned row caches
remain in existence for future use when row caching is enabled again.

The database must be closed when you enable or disable row caching.

2. The RMU/SET command allows you to enable or disable row caching using
an unjournaled operation. This is needed to disable row caches if you have
system tables mapped to row caches and you need to perform SQL operations
that require exclusive database access.

RMU/SET/ROW_CACHE[/DISABLED|/ENABLED] database_name

For example, adding a row cache to a database requires exclusive database
access. Execute this command before adding a new row cache using SQL then
re-enable row caching.

3. The RMU/OPEN/ROW_CACHE=DISABLED command is used to keep row
cache enabled in the database but not used for the duration of the open. This
is necessary in order to set up row caching in a Hot Standby environment.
Row caching is not allowed to be active on the standby database. Therefore,
this command should be issued on the standby system to open the database
without activating row caching.

A.4.2 Specifying Checkpointing and Sweeping Options
The following sections provide guidelines for specifying checkpointing and
sweeping options.

A.4.2.1 Choosing the Checkpoint Source and Target Options
For greatest flexibility, provide each row cache with its own checkpoint source
and target options as follows:

• The source rows to read

This determines which source rows in the cache to write back to disk. Only
updated rows or all rows can be selected. By default, only updated rows are
selected.

• The target location to write the rows

A–20 Implementing Row Cache

This determines whether the source rows are written back to the database
pages or written out to a separate row cache backing file.

You can specify the target location using the following parameters of the ADD,
ALTER, and CREATE CACHE clauses. Note that you cannot specify that all rows
are checkpointed to the database.

• CHECKPOINT UPDATED ROWS TO BACKING FILE

• CHECKPOINT UPDATED ROWS TO DATABASE

• CHECKPOINT ALL ROWS TO BACKING FILE

The following table lists the advantages and disadvantages of each checkpoint
target:

Table A–2 Checkpoint Target Options

Advantages Disadvantages

Checkpoint to Database

Does not require any more disk
space.

Is slower due to contention for
database page buffers.

Simpler to understand because
it uses the traditional database
page buffers.

Upon node failure, the row cache is
not re-populated.

Unmarks slots in the row cache
so they can be reused for other
rows.

Greater conflict with other users
since row and page locks are
maintained. The row cache server
(RCS) process does not respond
to requests to release row or page
locks

Writing back to database pages
reclaims space on database
pages from erased or modified
rows that have been reduced in
size.

Checkpoint to Backing File

Can checkpoint all rows allowing
a way to repopulate row caches
that are predominantly read-
only while recovering from a
node failure.

Requires extra disk space to create
two backing files per cache.

Faster at writing sequential I/O
operations to backing file.

Only used for node failure
protection.

Can be placed on different
spindles so that other database
I/O activity will not be impacted.

Marked rows tend to stay marked.
By definition, rows in a row cache
are only unmarked when they are
written back to the database.

Used upon node failure to
repopulate the row cache.

Space on the database pages
resulting from erased rows and
modified rows that are reduced in
size is not reclaimed.

Implementing Row Cache A–21

A.4.2.2 Choosing the Checkpoint Interval
You must specify a checkpoint interval in the following way: use the
CHECKPOINT TIMED EVERY s SECONDS parameter of the ROW CACHE
IS ENABLED clause. This checkpoint parameter applies to the RCS process only.

This value can be overridden by the RDM$BIND_CKPT_TIME logical (this logical
is also used to override the FAST COMMIT checkpoint interval). If nothing is
specified, Oracle Rdb uses a default checkpoint interval of 15 minutes.

A.4.2.3 Specifying Sweeping Parameters
You set the number of updated rows that will be swept by using the NUMBER
OF SWEEP ROWS IS parameter of the ADD, ALTER, and CREATE CACHE
clause.

SQL> ALTER DATABASE FILENAME INVENTORY
cont> ALTER CACHE PARTS
cont> ROW LENGTH IS 104 BYTES
cont> CACHE SIZE IS 2000 ROWS
cont> CHECKPOINT ALL ROWS TO BACKING FILE
cont> NUMBER OF SWEEP ROWS IS 200;

A row in a row cache cannot be reused if it is marked (modified) or if its reference
count is greater than zero. In the latter case, one or more users have a reference
to this row in their row cache working sets. The RCS sweep operation tries to
eliminate these restrictions from rows in the row cache so these rows can be
reused to insert new rows.

The RCS process writes committed modified rows back to the database, up to
a maximum of the NUMBER OF SWEEP ROWS defined for the row cache. It
is important that this value be set properly so that when a sweep is initiated,
the RCS process clears out enough slots to allow sufficient insertion activity
before another sweep operation is necessary. Typically, a value of 10 percent to 30
percent of the size of the row cache would be sufficient. Make sure that the sweep
count is larger than the value of the row cache’s reserved count, specified by the
NUMBER OF RESERVED ROWS IS N clause.

You can override the row cache’s defined sweep count value by defining the
RDM$BIND_RCS_SWEEP_COUNT logical name. Note, however, the value of
this logical name applies to all row caches.

During a sweep operation, the RCS process may also initiate a dialogue with
current users to reset the reference counts of the rows in the cache. The RCS
process will only do this during a sweep operation if the number of database
recovery processes since the last sweep operation of this row cache has exceeded
the number specified by the RDM$BIND_RCS_CLEAR_GRICS_DBR_CNT logical
name. Only processes that have abnormally terminated fail to clean up their
reference counts normally.

An RCS sweep operation is triggered when a row cache is considered ‘‘clogged’’.
A row cache is considered clogged when a user fails to find any available slots in
which to insert rows. Even after a row cache is considered full, a user may still
be able to insert rows into that row cache if the user still has reserved slots to
use.

The RCS process clears the clogged flag if the sweep operation was successful in
opening up some slots. The clogged flag can also become clear during a checkpoint
operation if the RCS process has detected row cache entries with zero reference
counts. This will only happen if the clogged flag stays set for three consecutive
checkpoint operations.

A–22 Implementing Row Cache

A.4.2.4 Specifying the Size and Location of the Cache Backing File
When allocating the size of the cache backing (.RDC) files, consider the following:

• Whether all rows or only marked rows will be checkpointed

• The amount of update activity in the row cache

• Whether you want to create new backing files on each database open or re-use
existing backing files

If you want Oracle Rdb to automatically rebuild an entire row cache in memory
after a node failure, then define the row cache to checkpoint all rows to a cache
backing file. If you want Oracle Rdb to repopulate the row cache with only the
rows that were modified at the time, then define the row cache to checkpoint only
updated rows to the cache backing file.

The decision you make determines how to size the cache backing files.

If all rows are to be checkpointed, use the following formula to determine the
number of blocks to allocate for the cache backing file.

Number of
blocks = (slot count * (row length + 40)) / 512 bytes per block

If only the updated rows are to be written to the backing file, use the following
formula to allocate the backing file, based on the estimated number of updated
rows in the row cache.

Number of
blocks = (# of updated rows * (row length + 40)) / 512 bytes per block

You can overwrite the allocation specified in the row cache definition with
the RDM$BIND_CKPT_FILE_SIZE system logical name. This specifies the
percentage of the row cache size to allocate for the backing file. The default is 40
percent.

Number of
blocks = (0.40 * slot count * (row length + 40)) / 512 bytes per block

When checkpointing to backing files, Oracle Rdb needs two backing files for
each cache. One is used for the last checkpoint (committed rows), and the other
is for the current checkpoint. Make sure there is enough disk space for two
backing files for each cache. By default, Oracle Rdb deletes the backing files upon
successful database shutdown and recreates them when the database is reopened.
If you prefer, you can tell Oracle Rdb to save the backing files and re-use them on
the subsequent database open by defining the system logical RDM$BIND_RCS_
KEEP_BACKING_FILES to ‘‘1’’.

If you are checkpointing a row cache to the database, you do not need to specify
an allocation or location for the cache backing file. Oracle Rdb will ignore these
clauses.

If you have a read-only cache, specify 1 block for the size of the cache backing file
as follows:

SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> ADD CACHE RCACHE_2
cont> LOCATION IS WORK$DISK1:[RCS]
cont> ALLOCATION IS 1 BLOCK;

Implementing Row Cache A–23

A.4.3 Controlling What is Cached in Memory
The ROW REPLACEMENT parameter of the ADD, ALTER, and CREATE
CACHE clause gives you some control over what happens when a row cache
becomes full. If row replacement is enabled for a particular row cache, new rows
will replace the oldest, unused, unmarked rows once the cache is full. If row
replacement is disabled, new rows are not placed in the cache once the cache is
full; they will always be retrieved from disk.

When you use the ROW REPLACEMENT IS DISABLED parameter, the data
that was memory resident stays that way and therefore all subsequent reads
occur from memory rather than disk.

You can increase performance by making the following types of rows memory
resident.

• Nonleaf nodes of a B-tree index

Be sure to account for the nodes splitting when you specify the size for the
row cache. If a parent node splits and there is no room in the cache for the
new node, the new node will not be held in memory.

• Data that is primarily read-only

Data that does not change very often, such as dimension tables in a data
warehouse environment, is a good candidate for keeping resident in memory.

• Data that is update-intensive; when the entire table can fit in the cache

Oracle Rdb optimizes access when the cache is defined with row replacement
disabled.

Enabling row replacement is beneficial when access patterns of a table are
random. This ensures that the most frequently accessed rows remain in memory.
Often, there may not be enough physical memory to cache an entire table, so
caching the most frequently used rows can improve performance.

A.4.3.1 Row Replacement Strategy
Global and local buffers use the least-recently used (LRU) replacement strategy
for database pages. Row caching uses a modified form of the LRU replacement
strategy. Each database user can protect the last 10 rows they accessed. This
group of rows is referred to as a working set. Rows that belong to a working
set are considered to be referenced and are not eligible for row replacement.
Any row that is in a cache and is not part of a working set is considered an
unreferenced row. The unreferenced rows are eligible for replacement if they
are not marked.

A.4.3.2 Inserting Rows into a Cache
Each user process requests rows from the database. A user process, which reads
a row from a storage area, tries to insert the row into the cache (if it is not
already there). If a slot is available, the requested row is stored in the cache, if it
fits. If no more slots are available in the cache, one of the following happens:

• If ROW REPLACEMENT IS ENABLED, and an unmarked, unreferenced row
can be found, that row is replaced by the new row. Oracle Rdb chooses the
unreferenced row randomly.

• If ROW REPLACEMENT IS DISABLED, the row is not stored in the cache.
This means that when the cache fills, it will not accept new rows. Reserved
slots, however, can still be used.

A–24 Implementing Row Cache

You can prevent individual processes from inserting new rows into any Oracle
Rdb row cache by defining the process logical RDM$BIND_RCACHE_INSERT_
ENABLED to ‘‘0’’. When defined, a process can only use what already exists in
the row caches; the process cannot insert a row into a row cache. This option
is useful if, for example, you want to keep nightly batch processes that perform
large reporting functions from filling up row caches that are also used by the
more important, daily, on-line transaction processing servers.

If system usage is lighter at night, you may want to preload row caches so that
the data is available in memory during the day when database activity is at its
peak.

The remainder of this section illustrates how Oracle Rdb inserts rows into a
cache.

The example makes the following assumptions:

• Row caching is enabled.

• Row replacement is enabled.

• A row cache (RCACHE_1) has been created with 25 slots.

• Two processes (Jones and Smith) are attached to the database.

• The rows in the row cache are not modified.

The initial allocation is as follows:

Row

Slot

Counter

Slot

Working Set of Process Smith

Working Set of Process Jones

Row Cache RCACHE_1

Slot

1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 252414

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

NU−3614A−RA

Row

Row

1. Process Jones executes a query that causes 5 rows to be read into the first 5
slots of the row cache.

Implementing Row Cache A–25

Row

Slot

Counter

Slot

Working Set of Process Jones

1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 252414

1 2 3 4 5 6 7 8 9 10

A B C D E

1 1 1 1 1

A B C D E

NU−3615A−RA

RowRow

Each row slot has a working set counter associated with it. The working set
counter indicates whether the row belongs to a working set. A positive value
indicates that the row belongs to a working set. If a row belongs to a working
set, it is not eligible for row replacement.

2. Process Smith requests 15 rows from the database. The first 10 rows
requested go into Smith’s working set as follows:

Working Set of Process Smith

Row

Slot 1 2 3 4 5 6 7 8 9 10

N OF G H I J K L M

NU−3616A−RA

Process Smith’s working set has exactly 10 slots, and all 10 are being used.
The least recently used row is replaced by the eleventh row that Process
Smith reads into the cache. Rows 12 through 15 also overwrite the contents
of slots 2 through 5 respectively.

After the 15 rows are read into the cache, the cache appears as follows:

Row

Slot

Counter

NU−3617A−RA

1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 252414

A B C D E

1 1 1 1 1

N O P Q R S TF G H I J K L M

1 11 11 11 11 10 0 0 0 0

After the 15 rows are read into the cache, Process Smith’s working set appears
as follows:

Working Set of Process Smith

Row

Slot 1 2 3 4 5 6 7 8 9 10

N OK L M

NU−3618A−RA

P Q R S T

At this point, rows F, G, H, I, and J are unreferenced. They are in the cache
but they do not belong to the working set of any process. Oracle Rdb sets
the working set counter for an unreferenced row to zero. The unreferenced
rows are eligible for replacement if they have not been modified and row
replacement is enabled. Any process can read rows F, G, H, I, or J without
executing an I/O operation. However, if a process requires a row that is not
currently in the cache, one of the rows F, G, H, I, or J is replaced with the
new row.

A–26 Implementing Row Cache

Each slot in the row cache contains a modification flag. If the row has been
modified, but not yet flushed to disk, it is considered to be dirty. Dirty rows
are not candidates for row replacement either. Modified rows are written
to disk by the row cache server (RCS) process. See Section A.4.2.1 for more
information.

3. Process Jones requests 7 more rows: M, U, V, W, X, Y, and Z. Jones can read
row M without performing any I/O because M is already in the cache. An
additional slot does not get filled in the row cache, but row M is added to
Process Jones’ working set.

Process Jones’ working set now appears as follows:

Row

Slot

Working Set of Process Jones

NU−3619A−RA

1 2 3 4 5 6 7 8 9 10

Y B C D E M U V W X

Rows U, V, W, X, and Y go into the remaining slots in the row cache and the
row cache appears as follows:

Row

Slot

Counter

NU−3620A−RA

1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 20 21 22 23 252414

A B C D E

1 1 1 1

N O P Q R S TF G H I J K L M

1 11 12 11 11 10 0 0 0 00

U V W X Y

1 1 1 1 1

Note that the working set counter for slot 13 indicates that row M is in two
working sets. This indicates that two processes are accessing the same row.
The number of processes sharing a particular slot is known as the share
count.

At this point, the cache is full. If row replacement were disabled for the
row cache, then row Z could not be inserted. However, in this example, row
replacement is enabled, and there is an unreferenced slot. Therefore, Oracle
Rdb will choose an unreferenced slot to make room for the new row, Z. (In
this example, the unreferenced slots are A, F, G, H, I, and J.)

A.5 Examining Row Cache Information
You can display the attributes using the SHOW CACHE statement as in the
following example:

SQL> SHOW CACHE PARTS;
PARTS

Cache Size: 204 rows
Row Length: 104 bytes
Row Replacement: Enabled
Shared Memory: Process
Large Memory: Disabled
Window Count: 100
Reserved Rows: 20
Sweep Rows: 1004
Allocation: 100 blocks
Extent: 100 blocks

Implementing Row Cache A–27

You can also use the RMU Dump command with the Header qualifier to display
row cache information, as in the following example:

Example A–4 Row Cache Parameters

$ RMU/DUMP/HEADER INVENTORY
.
.
.

Row Caches... 1
- Active row cache count is 4
- Reserved row cache count is 20
- Checkpoint information

Time interval is 10 seconds
Default source is updated rows
Default target is backing file
Default backing file directory is "DISK1:[RDB]"

.

.

.
Row cache "PARTS"

Cache ID number is 4 2
Allocation... 3

- Row slot count is 204
- Maximum row size allowed in cache is 104 bytes
- Working set count is 10
- Maximum slot reservation count is 20
- Row replacement is enabled

Sweeping... 4
- Sweep row count is 1004
- Maximum batch I/O count is 0

Checkpointing... 5
- Source is updated rows (database default)
- Target is backing file (database default)
- No checkpoint information available
- Checkpoint sequence is 0

Files... 6
- Default cache file directory is "DISK1:[RDB]"
- File allocation is 100 blocks
- File extension is 100 blocks

Hashing... 7
- Hash value for logical area DBIDs is 211
- Hash value for page numbers is 11

Shared Memory... 8
- System space memory is disabled
- Large memory is disabled
- Large memory window count is 100

Cache-size in different sections of memory... 9
- Without VLM, process or system memory requirement

is 309760 bytes
- With VLM enabled...

- Process or system memory requirement is 38768 bytes
- Physical memory requirement is 280000 bytes
- VLM Virtual memory address space requirement is

approximately 102400 bytes
.
.
.

The following callouts identify the parameters in Example A–4:

1 Row Caches . . .

• Active row cache count is 4

A–28 Implementing Row Cache

This specifies the number of row caches currently defined in this database.

• Reserved row cache count is 20

This specifies the number of slots that are available in the database. The
cache slots are reserved with the RESERVE n CACHE SLOTS parameter
of the ALTER or CREATE DATABASE statements.

• Checkpoint information

This displays database-level checkpoint information specified using
parameters of the ADD, ALTER, or CREATE CACHE clauses.

Time interval is 10 seconds

A checkpoint is one full pass through all active row caches, attempting
to write all or just marked rows back to their respective storage areas
or the backing file. The time interval is set with the CHECKPOINT
TIMED EVERY s SECONDS parameter.

Default source is updated rows

Only updated rows are written to the backing file or back to the
database storage areas.

Default target is backing file

Specifies that the default target for the checkpoint is the backing
file and not the database. This is the default target when the
CHECKPOINT UPDATED ROWS parameter is not set.

Default backing file directory is ‘‘DISK1:[RDB]’’.

The default cache file directory is the directory where Oracle Rdb
places the cache backing store files. If you do not explicitly include a
directory specification, Oracle Rdb will place the backing file in the
directory where the database root file is stored.

2 Cache ID number is

Oracle Rdb assigns an ID to each defined row cache in the database.

3 Allocation . . .

• Row slot count is 204

This is specified with the CACHE SIZE IS n ROWS parameter.

• Maximum row size allowed in cache is 104 bytes

This is specified with the ROW LENGTH IS n BYTES parameter.

• Working set count is 10

This is the number of ‘‘in use’’ rows that are not eligible for row
replacement.

• Maximum slot reservation count is 20

This is specified with the NUMBER OF RESERVED ROWS parameter.
The default value is 20 rows.

The number of reserved rows indicates how many slots in the cache
Oracle Rdb will reserve for each process. Reserving many rows minimizes
row cache locking while rows are inserted into the cache.

Implementing Row Cache A–29

The number of reserved rows parameter is also used when searching for
available slots in a row cache. The entire row cache is not searched on the
initial pass. This parameter is used as the maximum number of rows that
are searched for a free slot. If at least one free slot is found, the insert
operation can proceed. If no free slots are found in this initial search,
Oracle Rdb will continue searching through the cache until it finds a free
slot.

• Row replacement is enabled

This is specified with the ROW REPLACEMENT parameter. Row
replacement is enabled by default.

4 Sweeping . . .

• Sweep row count is

Sets the number of marked rows that will be swept back to the database
or backing file when the row cache is full and a user attempts to find an
empty slot.

5 Checkpointing . . .

• Source is updated rows (database default)

The source of updated rows is the same as the database default.

• Target is backing file (database default)

The target for marked rows is the database default.

6 Files . . .

• Default cache file directory is "DISK1:[RDB]"

The LOCATION parameter specifies a directory specification for the cache
backing store file. Oracle Rdb writes to the cache backing store file when
the RCS process checkpoints. Oracle Rdb automatically generates a file
name with a file extension of .rdc. The default location for the cache
backing store file is the directory where the database root file is stored.

The LOCATION parameter can be specified at the database level or at
the row cache level. If you include the LOCATION parameter in the
ADD CACHE or CREATE CACHE clauses of the CREATE or ALTER
DATABASE statements, the directory you specify becomes the default
directory location for all the row caches that are defined for the database.
You can, however, override the default directory location for individual
row caches by specifying the LOCATION parameter in the row cache
definition.

• File allocation is 100 blocks

The ALLOCATION parameter specifies the initial size of the cache
backing file. The default allocation is 40 percent of the cache size. The
cache size is determined by multiplying the number of rows in the cache
by the row length.

• File extension is 100 blocks

The EXTENT parameter specifies the number of pages by which the cache
backing store file can be extended after the initial allocation has been
reached. The default extent is 127 multiplied by the number of rows in
the cache.

A–30 Implementing Row Cache

7 Hashing . . .

• Hash value for logical area DBIDs is 211

• Hash value for page numbers is 11

The hash values are used by Oracle Rdb to fine-tune the distribution of
hash table queues in the row cache.

8 Shared Memory . . .

• System space memory is disabled

This is specified with the SHARED MEMORY parameter. This specifies
whether Oracle Rdb creates the row cache in shared memory. The row
cache is created in a process global section (OpenVMS) or in a shared
memory partition (Digital UNIX) by default.

• Large memory is disabled

This is specified with the LARGE MEMORY parameter. This specifies
whether Oracle Rdb creates the row cache in physical memory. Large
memory is disabled by default.

• Large memory window count is 100

This is specified with the WINDOW COUNT parameter. The default
value is 100 windows. The WINDOW COUNT specifies how many
locations of the physical memory are mapped to each user’s private
window in virtual address space.

9 Cache-size in different sections of memory . . .

• Without VLM, process or system memory requirement is 309760 bytes

When the cache is created in a process global section or system space
buffer and VLM is not enabled, this is the memory requirement.

• With VLM enabled . . .

Process or system memory requirement is 38768 bytes

When VLM is enabled and the cache is created in a process global
section or system space buffer, this is the memory requirement.

Physical memory requirement is 280000 bytes

The actual cached data requires this space in VLM.

VLM Virtual memory address space is approximately 102400 bytes

This is the address space used by the virtual memory windows.

A.5.1 RMU Show Statistics Screens and Row Caching
The RMU Show Statistics command displays much information regarding row
caches. The following are titles of some of the screens that can be displayed
regarding row cache:

• Summary Cache Statistics

• Summary Cache Unmark Statistics

• Row Cache (One Cache)

• Row Cache (One Field)

• Row Cache Utilization

Implementing Row Cache A–31

• Hot Row Information

• Row Cache Status

• Row Cache Queue Length

• Row Length Distribution

• RCS Statistics

• Row Cache Dashboard

• RCS Dashboard

• Per-Process Row Cache Dashboard

A.6 Examples
This section includes some practical examples on using the row cache feature of
Oracle Rdb.

A.6.1 Loading a Logical Area Cache
Use the following steps to place an entire table in a row cache:

1. Determine how many rows are in the table.

SQL> SELECT COUNT(*) FROM EMPLOYEES;
100

1 row selected

2. Create a logical cache large enough to hold to the table.

Use the table name as the name of the cache to create the logical cache.
Oracle Rdb will determine the row length from the table.

SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> ADD CACHE EMPLOYEES
cont> CACHE SIZE IS 100 ROWS;

3. Cause Rdb to sort the table by an indexed field.

This causes rows to be read by DBKEY after the sort is complete.

SQL> SELECT * FROM EMPLOYEES ORDER BY EMPLOYEE_ID;
EMPLOYEE_ID LAST_NAME FIRST_NAME MIDDLE_INITIAL

ADDRESS_DATA_1 ADDRESS_DATA_2 CITY
STATE POSTAL_CODE SEX BIRTHDAY STATUS_CODE

00197 Danzig Chris NULL
136 Beaver Brook Circle Acworth

NH 03601 F 21-Jun-1939 1
.
.
.

A.6.2 Caching Database Metadata
Because metadata is frequently accessed, you may want to cache some or all of
your database’s metadata. You can map the entire contents of the RDB$SYSTEM
storage area to a physical area row cache. Alternatively, you can map certain
system tables, such as RDB$RELATIONS and RDB$INDICES, into separate
logical area row caches.

A–32 Implementing Row Cache

To do this, follow these steps.

1. Use the RMU/DUMP/AREA command to display the contents of the storage
area. (Note that the RMU Dump command output uses the term records to
refer to rows.)

$RMU/DUMP/AREA=RDB$SYSTEM/OUT=RMU_DUMP_1.OUT MF_PERSONNEL
$SEARCH/STATISTICS RMU_DUMP_1.OUT "RECORD LENGTH", "STATIC_DATA"

00A2 0050 record length 162 bytes
00E8 008B record length 232 bytes
00C4 00C6 record length 196 bytes
00E4 0101 record length 228 bytes
0088 013C record length 136 bytes
023C 0177 record length 572 bytes
0220 01B2 record length 544 bytes
030C 01ED record length 780 bytes

.

.

.
Files searched: 1 Buffered I/O count: 100
Records searched: 62260 Direct I/O count: 441
Characters searched: 3459752 Page faults: 20
Records matched: 96 Elapsed CPU time: 0 00:00:01.63
Lines printed: 96 Elapsed time: 0 00:00:02.83

2. Determine the row length and slot count.

Keep in mind that other structures may be stored in this area because it can
be specified as the default storage area for Oracle Rdb.

3. Add the physical cache and assign it to the RDB$SYSTEM storage area.

In the following example, row length has been rounded up and the cache size
has been increased to allow for future growth.

SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> ADD CACHE RDB_SYSTEM_CACHE
cont> CACHE SIZE IS 9000 ROWS
cont> ROW LENGTH IS 800 BYTES;
SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> ALTER STORAGE AREA RDB$SYSTEM
cont> CACHE USING RDB_SYSTEM_CACHE;

4. Or, add the logical area caches to the Rdb system tables of interest.

SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> ADD CACHE RDB$RELATIONS
cont> CACHE SIZE IS 1000 ROWS
cont> ROW LENGTH IS 500 BYTES
cont> ADD CACHE RDB$INDICES
cont> CACHE SIZE IS 2000 ROWS
cont> ROW LENGTH IS 500 BYTES;

When caching metadata, you will experience conflicts when executing database
operations through SQL that require exclusive database access. For example, adding
new row caches or dropping existing ones requires exclusive database access. When
the SQL command is parsed, the Oracle Rdb system tables are queried. This access to
the system tables creates the row caches and causes the RCS process to come up to
manage those row caches. As a result, the database now has another ‘‘user’’, the RCS
process. This causes the exclusive database operation to fail.

Implementing Row Cache A–33

To resolve this, you must first turn off row caching temporarily using the RMU Set
command specifying the Row_Cache and Disabled qualifiers. Then, perform the SQL
operation that requires exclusive database access. Finally, re-enable row caching
using the RMU Set command with the Row_Cache and Enabled qualifiers.

A.6.3 Caching a Sorted Index
To cache a sorted index, use the following steps:

1. Display the number of index nodes using the RMU Analyze Index command.
(Note that the RMU Analyze command uses the term records to refer to
rows.)

$RMU/ANALYZE/INDEX MF_PERSONNEL EMP_LAST_NAME

Index EMP_LAST_NAME for relation EMPLOYEES duplicates allowed
Max Level: 2, Nodes: 8, Used/Avail: 1625/3184 (51%), Keys: 90, Records: 67

Duplicate nodes: 16, Used/Avail: 264/312 (85%), Keys: 16, Records: 33

2. Count the number of nodes and duplicate nodes.

3. Allocate slots based on the number of nodes currently used and allow for
future growth.

In this example, allocating 28 slots would be reasonable.

4. Determine node and duplicate node size. Sorted indexes with duplicates
should be sized at 430 bytes rounded up to the next 4-byte interval.

5. Create a logical cache for the sorted index.

SQL> ALTER DATABASE FILENAME MF_PERSONNEL
cont> ADD CACHE EMP_LAST_NAME
cont> ROW LENGTH IS 440 BYTES
cont> CACHE SIZE IS 28 ROWS;

A–34 Implementing Row Cache

B
Row Cache Statements

B.1 ALTER DATABASE Statement
B.1.1 Overview

Alters a database in any of the following ways:

• For single-file and multifile databases, the ALTER DATABASE statement
changes the characteristics of the database root file.

The ALTER DATABASE statement lets you override certain characteristics
specified in the database root file parameters of the CREATE DATABASE
statement, such as whether or not a snapshot file is disabled. In addition,
ALTER DATABASE lets you control other characteristics you cannot specify
in the CREATE DATABASE database root file parameters, such as whether
or not after-image journaling is enabled.

• For single-file and multifile databases, the ALTER DATABASE statement
changes the storage area parameters.

• For multifile databases only, the ALTER DATABASE statement adds, alters,
or deletes storage areas.

B.1.2 Environment
You can use the ALTER DATABASE statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Row Cache Statements B–1

B.1.3 Format
ALTER DATABASE FILENAME <file-spec>

PATHNAME <path-name> literal-user-auth

alter-root-file-params1
alter-root-file-params2
alter-root-file-params3
alter-journal-params
alter-storage-area-params
add-row-cache-clause
add-journal-clause
add-storage-area-clause
alter-row-cache-clause
alter-journal-clause
alter-storage-area-clause
drop-clause

alter-root-file-params2 =

CARDINALITY COLLECTION IS ENABLED
CARRY OVER LOCKS ARE DISABLED
LOCK PARTITIONING IS
METADATA CHANGES ARE
STATISTICS COLLECTION IS
WORKLOAD COLLECTION IS
LOCK TIMEOUT INTERVAL IS <number-seconds> SECONDS
RECOVERY JOURNAL (BUFFER MEMORY IS LOCAL)

GLOBAL
RESERVE <n> CACHE SLOTS

JOURNALS
STORAGE AREAS

ROW CACHE IS ENABLED
DISABLED row-cache-options

SET TRANSACTION MODES (txn-modes)
ALTER ,

row-cache-options =

(CHECKPOINT TIMED EVERY <n> SECONDS)
UPDATED ROWS TO BACKING FILE

DATABASE
ALL ROWS TO BACKING FILE

LOCATION IS <directory-spec>
NO LOCATION

,

B–2 Row Cache Statements

alter-storage-area-params =

ALLOCATION IS <number-pages> PAGES
extent-params
CACHE USING <row-cache-name>
NO ROW CACHE
LOCKING IS ROW LEVEL

PAGE
READ WRITE
READ ONLY
SNAPSHOT ALLOCATION IS <snp-pages> PAGES
SNAPSHOT EXTENT IS <extent-pages> PAGES

(extension-options)
CHECKSUM CALCULATION IS ENABLED
SNAPSHOT CHECKSUM CALCULATION IS DISABLED

add-row-cache-clause =

ADD CACHE <row-cache-name>
row-cache-params1
row-cache-params2

row-cache-params1 =

ALLOCATION IS <n>
EXTENT IS <n> BLOCK

BLOCKS
CACHE SIZE IS <n> ROW

ROWS
CHECKPOINT UPDATED ROWS TO BACKING FILE

DATABASE
ALL ROWS TO BACKING FILE

LARGE MEMORY IS ENABLED
ROW REPLACEMENT IS DISABLED
LOCATION IS <directory-spec>
NO LOCATION

row-cache-params2 =

NUMBER OF RESERVED ROWS IS <n>
SWEEP

ROW LENGTH IS <n>
BYTE
BYTES

SHARED MEMORY IS SYSTEM
PROCESS

WINDOW COUNT IS <n>

Row Cache Statements B–3

storage-area-params-2 =

CHECKSUM CALCULATION IS ENABLED
SNAPSHOT CHECKSUM CALCULATION IS DISABLED
SNAPSHOT ALLOCATION IS <snp-pages> PAGES
SNAPSHOT EXTENT IS <extent-pages> PAGES

(extension-options)
SNAPSHOT FILENAME <file-spec>
THRESHOLDS ARE (<val1>)

,<val2>
,<val3>

WRITE ONCE
(JOURNAL IS ENABLED)

DISABLED

alter-row-cache-clause =

ALTER CACHE <row-cache-name>
row-cache-params1
row-cache-params2

drop-clause =

DROP CACHE <row-cache-name>
DROP STORAGE AREA <area-name> CASCADE

RESTRICT
DROP JOURNAL <journal-name>

B.1.4 Arguments
B.1.4.1 RECOVERY JOURNAL (BUFFER MEMORY IS {LOCAL | GLOBAL})

The RUJ buffers used by each process are normally allocated in local virtual
memory. With the introduction of ROW CACHE, these buffers can now be
assigned to a shared global section (GLOBAL memory) so that the recovery
process can process this in memory buffer and possibly avoid a disk access.

This buffer memory can be defined a GLOBAL to improve ROW CACHE
performance for recovery. If ROW CACHE is DISABLED then buffer memory
is always LOCAL.

B.1.4.2 RESERVE n CACHE SLOTS
Specifies the number of row caches for which slots are reserved in the database.

You can use the RESERVE CACHE SLOTS clause to reserve slots in the database
root file for future use by the ADD CACHE clause. Row caches can be added only
if there are row cache slots available. Slots become available after a DROP
CACHE clause or a RESERVE CACHE SLOTS clause.

The number of reserved slots for row cache cannot be decreased once the
RESERVE clause is issued. If you reserve 10 slots and later reserve 5 slots,
you have a total of 15 reserved slots for row caches.

Reserving row cache slots is an offline operation (requiring exclusive database
access).

B–4 Row Cache Statements

B.1.4.3 CACHE USING row-cache-name
Assigns the named row cache as the default physical row cache for all storage
areas in the database. All rows stored in each storage area, whether they consist
of table data, segmented string data, or special rows such as index nodes, are
cached.

The row cache must exist before terminating the ALTER DATABASE statement.

Alter the database and storage area to assign a new physical area row cache to
override the database default physical area row cache. Only one physical area
row cache is allowed for each storage area.

You can have multiple row caches containing rows for a single storage
area by defining logical area row caches, where the row cache name
matches the name of a table or index.

If you do not specify the CACHE USING clause or the NO ROW CACHE clause,
NO ROW CACHE is the default for the database.

B.1.4.4 NO ROW CACHE
Specifies that the database default is not to assign a row cache to all storage
areas in the database. You cannot specify the NO ROW CACHE clause if you
specify the CACHE USING clause.

Alter the storage area and name a row cache to override the database default.
Only one row cache is allowed for each storage area.

If you do not specify the CACHE USING clause or the NO ROW CACHE clause,
NO ROW CACHE is the default for the database.

B.1.4.5 ROW CACHE IS ENABLED/ROW CACHE IS DISABLED
Specifies whether or not you want Oracle Rdb to enable the row caching feature.

Enabling cache support does not affect database operations until a cache is
created and assigned to one or more storage areas.

When the row caching feature is disabled, all previously created and assigned
caches remain in existence for future use when the row caching feature is
enabled.

Enabling and disabling the row cache feature is an offline operation (requiring
exclusive database access).

B.1.4.5.1 CHECKPOINT TIMED EVERY N SECONDS Specifies the frequency
with which the RCS process checkpoints the contents of the row caches back to
disk. The RCS process does not use the checkpoint frequency options of
the FAST COMMIT clause.

The frequency of RCS checkpointing is important in determining how much of
an AIJ file must be read during a REDO operation following a node failure. It
also affects the frequency that marked records get flushed back to the database,
for those row caches that checkpoint to the database. The default is every 15
minutes (900 seconds).

Row Cache Statements B–5

B.1.4.5.2 CHECKPOINT ALL ROWS TO BACKING FILE/ CHECKPOINT
UPDATED ROWS TO BACKING FILE/ CHECKPOINT UPDATED ROWS TO
DATABASE Specifies the default source and target for checkpoint operations for
all row caches. If ALL ROWS is specified, then the source records written during
each checkpoint operation are both the modified and the unmodified rows in a
row cache. If UPDATED ROWS is specified, then just the modified rows in a row
cache are checkpointed each time.

If the target of the checkpoint operation is BACKING FILE, then the RCS
process writes the source row cache entries to the backing (.rdc) files. The row
cache LOCATION, ALLOCATION, and EXTENT clauses are used to create the
backing files. Upon recovery from a node failure, the database recovery process is
able to re-populate the in-memory row caches from the rows found in the backing
files.

If the target is DATABASE, then the target rows (only UPDATED ROWS
is allowed) are written back to the database. The row cache LOCATION,
ALLOCATION, and EXTENT clauses are ignored. Upon recovery from a node
failure, the database recovery process has no data on the contents of the row
cache. Therefore, it does not re-populate the in-memory row caches.

The CHECKPOINT clause of the CREATE CACHE, ADD CACHE, or ALTER
CACHE clause overrides this database level CHECKPOINT clause.

B.1.4.5.3 LOCATION IS directory-spec Specifies the name of the default
backing store directory to which all row cache backing files are written. The
database system generates a file name automatically (row-cache-name.rdc) for
each row cache backing file it creates when the RCS process first starts up.
Specify a device name and directory name only, enclosed within single quotation
marks. By default, the location is the directory of the database root file.

The LOCATION clause of the CREATE CACHE, ADD CACHE, or ALTER
CACHE clause overrides this location which is the default for the database.

B.1.4.5.4 NO LOCATION Removes the location previously specified in a
LOCATION IS clause for the database for the row cache backing file. If you
specify NO LOCATION, the row cache backing file location becomes the directory
of the database root file.

The LOCATION clause of the CREATE CACHE, ADD CACHE, or ALTER
CACHE clause overrides this location which is the default for the database.

B.1.4.6 ADD CACHE clause
Creates a new row cache.

B.1.4.6.1 ALLOCATION IS n BLOCK/ALLOCATION IS n BLOCKS Specifies the
initial allocation of the row cache backing file (.rdc) to which cached rows are
written during a checkpoint operation.

If the ALLOCATION clause is not specified, the default allocation in blocks is
approximately 40 percent of the CACHE SIZE for this row cache.

This clause is ignored if the row cache is defined to checkpoint to the database.

B–6 Row Cache Statements

B.1.4.6.2 CACHE SIZE IS n ROW/CACHE SIZE IS n ROWS Specifies the
number of rows allocated to the row cache. As the row cache fills, rows more
recently referenced are retained in the row cache while those not referenced
recently are discarded. Adjusting the allocation of the row cache helps to retain
important rows in memory. If not specified, the default is 1000 rows.

The product of the CACHE SIZE and the ROW LENGTH settings determines the
amount of memory required for the row cache. (Some additional overhead and
rounding up to page boundaries is performed by the database system.) The row
cache is shared by all processes attached to the database.

B.1.4.6.3 CHECKPOINT ALL ROWS TO BACKING FILE/ CHECKPOINT
UPDATED ROWS TO BACKING FILE/ CHECKPOINT UPDATED ROWS TO
DATABASE Specifies the source and target for checkpoint operations for the
row cache. If ALL ROWS is specified, then the source records written during each
checkpoint operation are both the modified and the unmodified rows in the row
cache. If UPDATED ROWS is specified, then just the modified rows in the row
cache are checkpointed each time.

If the target of the checkpoint operation is BACKING FILE, then the RCS
process writes the source row cache entries to the backing (.rdc) files. The row
cache LOCATION, ALLOCATION, and EXTENT clauses are used to create the
backing files. Upon recovery from a node failure, the database recovery process is
able to re-populate the in-memory row caches from the rows found in the backing
files.

If the target is DATABASE, then the target rows (only UPDATED ROWS
is allowed) are written back to the database. The row cache LOCATION,
ALLOCATION, and EXTENT clauses are ignored. Upon recovery from a node
failure, the database recovery process has no data on the contents of the row
cache. Therefore, it does not re-populate the in-memory row caches.

This CHECKPOINT clause overrides the database level CHECKPOINT clause.

B.1.4.6.4 EXTENT IS n BLOCK/EXTENT IS n BLOCKS Specifies the file extent
size for the row cache backing file (.rdc).

If the EXTENT clause is not specified, the default number of blocks is CACHE
SIZE * 127 for this cache.

This clause is ignored if the row cache is defined to checkpoint to the database.

B.1.4.6.5 LARGE MEMORY IS ENABLED/LARGE MEMORY IS DISABLED
Specifies whether or not large memory is used to manage the row cache. Very
large memory (VLM) allows Oracle Rdb to use as much physical memory as is
available. It provides access to a large amount of physical memory through small
virtual address windows.

Use LARGE MEMORY IS ENABLED only when both of the following are true:

• You have enabled row caching.

• You want to cache large amounts of data, but the cache does not fit in the
virtual address space.

The default is DISABLED. See the Usage Notes for restrictions pertaining to the
very large memory (VLM) feature.

Row Cache Statements B–7

B.1.4.6.6 LOCATION IS directory-spec Specifies the name of the default
backing store directory to which all row cache backing files are written. The
database system generates a file name automatically (row-cache-name.rdc) for
each row cache backing file it creates when the RCS process first starts up.
Specify a device name and directory name only, enclosed within single quotation
marks. By default, the location is the directory of the database root file.

This LOCATION clause overrides a previously specified location at the database
level.

This clause is ignored if the row cache is defined to checkpoint to the database.

B.1.4.6.7 NO LOCATION Removes the location previously specified in a
LOCATION IS clause for the database for the row cache backing file. If you
specify NO LOCATION, the row cache backing file location becomes the directory
of the database root file.

This clause is ignored if the row cache is defined to checkpoint to the database.

B.1.4.6.8 NUMBER OF RESERVED ROWS IS n Specifies the maximum number
of cache rows that each user can reserve. The default is 20 rows.

The number of reserved rows parameter is also used when searching for available
slots in a row cache. The entire row cache is not searched on the initial pass.
This parameter is used as the maximum number of rows that are searched for
a free slot. If at least one free slot is found, the insert operation can proceed. If
no free slots are found in this initial search, Oracle Rdb will continue searching
through the cache until it finds a free slot.

B.1.4.6.9 NUMBER OF SWEEP ROWS IS n Specifies the number of modified
cache rows that will be written back to the database to make space available
in the cache for subsequent transactions to insert rows into the cache. It is
recommended that users initially specify the number of sweep rows to be between
ten and thirty percent of the total number of rows in the cache. Users should
then monitor performance and adjust the number of sweep rows if necessary. The
default setting is 3000 rows.

B.1.4.6.10 ROW LENGTH IS n BYTE/ROW LENGTH IS n BYTES Specifies the
size of each row allocated to the row cache. Rows are not cached if they are longer
than a row cache row. The ROW LENGTH is an aligned longword rounded up to
the next multiple of 4 bytes.

If the ROW LENGTH clause is not specified, the default row length is 256 bytes.

B.1.4.6.11 ROW REPLACEMENT IS ENABLED/ROW REPLACEMENT IS
DISABLED Specifies whether or not Oracle Rdb replaces rows in the cache.
When the ROW REPLACEMENT IS ENABLED clause is used, rows are
replaced when the row cache becomes full. When the ROW REPLACEMENT
IS DISABLED clause is used, rows are not replaced when the cache is full. The
type of row replacement policy depends upon the application requirements for
each cache.

The default is ENABLED.

B–8 Row Cache Statements

B.1.4.6.12 SHARED MEMORY IS SYSTEM/SHARED MEMORY IS PROCESS
Determines whether cache global sections are created in system space or process
space. The default is SHARED MEMORY IS PROCESS.

When you use cache global sections created in the process space, you and other
users share physical memory and the OpenVMS Alpha operating system maps
a row cache to a private address space for each user. As a result, all users are
limited by the free virtual address range and each use a percentage of memory in
overhead. If many users are accessing the database, the overhead can be high.

When many users are accessing the database, consider using SHARED MEMORY
IS SYSTEM. This gives users more physical memory because they share the
system space of memory and there is none of the overhead associated with the
process space of memory.

B.1.4.6.13 WINDOW COUNT IS n Specifies the number of virtual address
windows used by the LARGE MEMORY clause.

The window is a view into the physical memory used to create the very large
memory (VLM) information. Because the VLM size may be larger than that
which can be addressed by a 32-bit pointer, you need to view the VLM information
through small virtual address windows.

You can specify a positive integer in the range from 10 through 65535. The
default is 100 windows.

B.1.4.7 ALTER CACHE row-cache-name
Alters existing row caches.

B.1.4.7.1 row-cache-params For information regarding the row-cache-params,
see the descriptions under the ADD CACHE argument described earlier in this
arguments list.

B.1.4.7.2 DROP CACHE row-cache-name CASCADE

B.1.4.7.3 DROP CACHE row-cache-name RESTRICT Deletes the specified row
cache from the database.

If the mode is RESTRICT, an exception is raised if the row cache is assigned to a
storage area.

If the mode is CASCADE, the row cache is removed from all referencing storage
areas.

The default is RESTRICT if no mode is specified.

B.2 CREATE DATABASE
B.2.1 Overview

Creates database system files, metadata definitions, and user data that comprise
a database. The CREATE DATABASE statement lets you specify in a single
SQL statement all data and privilege definitions for a new database. (You can
also add definitions to the database later.) For information about ways to ensure
good performance and data consistency, see the Oracle Rdb Guide to Database
Performance and Tuning.

Row Cache Statements B–9

B.2.2 Environment
You can use the CREATE DATABASE statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

B.2.3 Format

CREATE DATABASE
ALIAS <alias>

root-file-params-1 storage-area-params-1
root-file-params-2 storage-area-params-2
root-file-params-3
root-file-params-4

character-sets database-element

root-file-params-2 =

SNAPSHOT IS ENABLED IMMEDIATE
DEFERRED

DISABLED
DICTIONARY IS REQUIRED

NOT REQUIRED
ADJUSTABLE LOCK GRANULARITY IS ENABLED alg-options

DISABLED
LOCK TIMEOUT INTERVAL IS <number-seconds> SECONDS
SEGMENTED STRING STORAGE AREA IS <area-name>
LIST
DEFAULT
PROTECTION IS ANSI

ACLS
RECOVERY JOURNAL (BUFFER MEMORY IS LOCAL)

GLOBAL
RESERVE <n> CACHE SLOTS

JOURNALS
STORAGE AREAS

SET TRANSACTION MODES (txn-modes)
ALTER ,

B–10 Row Cache Statements

root-file-params-3 =

CARDINALITY COLLECTION IS ENABLED
CARRY OVER LOCKS ARE DISABLED
LOCK PARTITIONING IS
METADATA CHANGES ARE
STATISTICS COLLECTION IS
SYSTEM INDEX COMPRESSION IS
WORKLOAD COLLECTION IS
ASYNC BATCH WRITES ARE ENABLED async-bat-wr-options

DISABLED
ASYNC PREFETCH IS

DETECTED
ENABLED async-prefetch-options
DISABLED

ROW CACHE IS ENABLED
DISABLED row-cache-options

row-cache-options =

(CHECKPOINT TIMED EVERY <n> SECONDS)
UPDATED ROWS TO BACKING FILE

DATABASE
ALL ROWS TO BACKING FILE

LOCATION IS <directory-spec>
NO LOCATION

,

storage-area-params-1 =

ALLOCATION IS <number-pages> PAGES
CACHE USING <row-cache-name>
NO ROW CACHE
extent-params
INTERVAL IS <number-data-pages>
LOCKING IS ROW LEVEL

PAGE
PAGE FORMAT IS UNIFORM

MIXED
PAGE SIZE IS <page-blocks> BLOCKS

Row Cache Statements B–11

storage-area-params-2 =

CHECKSUM CALCULATION IS ENABLED
SNAPSHOT CHECKSUM CALCULATION IS DISABLED
SNAPSHOT ALLOCATION IS <snp-pages> PAGES
SNAPSHOT EXTENT IS <extent-pages> PAGES

(extension-options)
SNAPSHOT FILENAME <file-spec>
THRESHOLDS ARE (<val1>)

,<val2>
,<val3>

WRITE ONCE
(JOURNAL IS ENABLED)

DISABLED

B.2.4 Arguments
B.2.4.1 RECOVERY JOURNAL (BUFFER MEMORY IS {LOCAL | GLOBAL})

The RUJ buffers used by each process are normally allocated in local virtual
memory. With the introduction of ROW CACHE, these buffers can now be
assigned to a shared global section (GLOBAL memory) so that the recovery
process can process this in memory buffer and possibly avoid a disk access.

This buffer memory can be defined a GLOBAL to improve ROW CACHE
performance for recovery. If ROW CACHE is DISABLED then buffer memory
is always LOCAL.

B.2.4.2 CACHE USING row-cache-name
Assigns the named row cache as the default physical row cache for all storage
areas in the database. All rows stored in each storage area, whether they consist
of table data, segmented string data, or special rows such as index nodes, are
cached.

You must create the row cache before terminating the CREATE DATABASE
statement. For example:

SQL> CREATE DATABASE FILENAME test_db
cont> ROW CACHE IS ENABLED
cont> CACHE USING test1
cont> CREATE CACHE test1
cont> CACHE SIZE IS 100 ROWS
cont> CREATE STORAGE AREA area1;

If you do not specify the CACHE USING clause or the NO ROW CACHE clause,
NO ROW CACHE is the default for the database.

You can override the database default row cache by either specifying the CACHE
USING clause after the CREATE STORAGE AREA clause or by later altering the
database and storage area to assign a new row cache. Only one physical area row
cache is allowed for each storage area.

You can have multiple row caches containing rows for a single storage
area by defining logical area row caches, where the row cache name
matches the name of a table or index.

B–12 Row Cache Statements

B.2.4.2.1 NO ROW CACHE Specifies that the database default is not to assign
a row cache to all storage areas in the database. You cannot specify the NO ROW
CACHE clause if you specify the CACHE USING clause.

Alter the storage area and name a row cache to override the database default.
Only one row cache is allowed for each storage area.

If you do not specify the CACHE USING clause or the NO ROW CACHE clause,
NO ROW CACHE is the default for the database.

B.2.4.3 RESERVE n CACHE SLOTS
Specifies the number of row caches for which slots are reserved in the database.

You can use the RESERVE CACHE SLOTS clause to reserve slots in the database
root file for future use by the ADD CACHE clause. Row caches can be added only
if there are row cache slots available. Slots become available after a DROP
CACHE clause or a RESERVE CACHE SLOTS clause.

The number of reserved slots for row caches cannot be decreased once the
RESERVE clause is issued. If you reserve 10 slots and later reserve 5 slots,
you have a total of 15 reserved slots for row caches.

Reserving row cache slots is an offline operation (requiring exclusive database
access). See the Section B.1 for more information about row caches.

B.2.4.4 ROW CACHE IS ENABLED/ROW CACHE IS DISABLED
Specifies whether or not you want Oracle Rdb to enable the row caching feature.

When a database is created or is converted from a previous version of Oracle Rdb
without specifying row cache support, the default is ROW CACHE IS DISABLED.
Enabling row cache support does not affect database operations until a row cache
area is created and assigned to one or more storage areas.

When the row caching feature is disabled, all previously created and assigned
row caches remain in existence for future use when the row caching feature is
enabled.

B.2.4.4.1 CHECKPOINT TIMED EVERY N SECONDS Specifies the frequency
with which the RCS process checkpoints the contents of the row caches back to
disk. The RCS process does not use the checkpoint frequency options of
the FAST COMMIT clause.

The frequency of RCS checkpointing is important in determining how much of
an AIJ file must be read during a REDO operation following a node failure. It
also affects the frequency that marked records get flushed back to the database,
for those row caches that checkpoint to the database. The default is every 15
minutes (900 seconds).

B.2.4.4.2 CHECKPOINT ALL ROWS TO BACKING FILE/ CHECKPOINT
UPDATED ROWS TO BACKING FILE/ CHECKPOINT UPDATED ROWS TO
DATABASE Specifies the default source and target for checkpoint operations for
all row caches. If ALL ROWS is specified, then the source records written during
each checkpoint operation are both the modified and the unmodified rows in a
row cache. If UPDATED ROWS is specified, then just the modified rows in a row
cache are checkpointed each time.

If the target of the checkpoint operation is BACKING FILE, then the RCS
process writes the source row cache entries to the backing (.rdc) files. The row
cache LOCATION, ALLOCATION, and EXTENT clauses are used to create the
backing files. Upon recovery from a node failure, the database recovery process is

Row Cache Statements B–13

able to re-populate the in-memory row caches from the rows found in the backing
files.

If the target is DATABASE, then the target rows (only UPDATED ROWS
is allowed) are written back to the database. The row cache LOCATION,
ALLOCATION, and EXTENT clauses are ignored. Upon recovery from a node
failure, the database recovery process has no data on the contents of the row
cache. Therefore, it does not re-populate the in-memory row caches.

The CHECKPOINT clause of the CREATE CACHE, ADD CACHE, or ALTER
CACHE clause overrides this database level CHECKPOINT clause.

B.2.4.4.3 LOCATION IS directory-spec Specifies the name of the default
backing store directory to which all row cache backing files are written. The
database system generates a file name automatically (row-cache-name.rdc) for
each row cache backing file it creates when the RCS process first starts up.
Specify a device name and directory name only, enclosed within single quotation
marks. By default, the location is the directory of the database root file.

The LOCATION clause of the CREATE CACHE, ADD CACHE, or ALTER
CACHE clause overrides this location which is the default for the database.

B.2.4.4.4 NO LOCATION Removes the location previously specified in a
LOCATION IS clause for the database for the row cache backing file. If you
specify NO LOCATION, the row cache backing file location becomes the directory
of the database root file.

The LOCATION clause of the CREATE CACHE, ADD CACHE, or ALTER
CACHE clause overrides this location which is the default for the database.

B.3 CREATE CACHE Clause
Creates a row cache area that allows frequently referenced rows to remain in
memory even when the associated page has been transferred back to disk. This
saves in memory usage because only the more recently referenced rows are
cached versus caching the entire buffer.

See the Section B.1 and the Section B.2 for more information regarding the row
cache areas.

B.3.1 Environment
You can use the CREATE CACHE clause only within a CREATE DATABASE or
IMPORT statement.

B.3.2 Format

CREATE CACHE <row-cache-name>
row-cache-params1
row-cache-params2

B–14 Row Cache Statements

row-cache-params1 =

ALLOCATION IS <n>
EXTENT IS <n> BLOCK

BLOCKS
CACHE SIZE IS <n> ROW

ROWS
CHECKPOINT UPDATED ROWS TO BACKING FILE

DATABASE
ALL ROWS TO BACKING FILE

LARGE MEMORY IS ENABLED
ROW REPLACEMENT IS DISABLED
LOCATION IS <directory-spec>
NO LOCATION

row-cache-params2 =

NUMBER OF RESERVED ROWS IS <n>
SWEEP

ROW LENGTH IS <n>
BYTE
BYTES

SHARED MEMORY IS SYSTEM
PROCESS

WINDOW COUNT IS <n>

B.3.3 Arguments
B.3.3.0.1 CACHE row-cache-name Creates a row cache.

B.3.3.0.2 ALLOCATION IS n BLOCK/ALLOCATION IS n BLOCKS Specifies
the initial allocation of the row cache file (.rdc) to which cached rows are written
during a checkpoint operation.

If the ALLOCATION clause is not specified, the default allocation in blocks is
approximately 40 percent of the CACHE SIZE for this cache.

This clause is ignored if the row cache is defined to checkpoint to the database.

B.3.3.0.3 EXTENT IS n BLOCK/EXTENT IS n BLOCKS Specifies the file extent
size for the row cache backing file (.rdc).

If the EXTENT clause is not specified, the default number of blocks is CACHE
SIZE * 127 for this cache.

This clause is ignored if the row cache is defined to checkpoint to the database.

B.3.3.0.4 CACHE SIZE IS n ROW/CACHE SIZE IS n ROWS Specifies the
number of rows allocated to the row cache. As the row cache fills, rows more
recently referenced are retained in the row cache while those not referenced
recently are discarded. Adjusting the allocation of the row cache helps to retain
important rows in memory. If not specified, the default is 1000 rows.

The product of the CACHE SIZE and the ROW LENGTH settings determines the
amount of memory required for the row cache. (Some additional overhead and
rounding up to page boundaries is performed by the database system.) The row
cache is shared by all processes attached to the database.

Row Cache Statements B–15

B.3.3.0.5 CHECKPOINT ALL ROWS TO BACKING FILE/ CHECKPOINT
UPDATED ROWS TO BACKING FILE/ CHECKPOINT UPDATED ROWS TO
DATABASE Specifies the source and target for checkpoint operations for the row
cache. If ALL ROWS is specified, then the source records written during each
checkpoint operation are both the modified and the unmodified rows in the row
cache. If UPDATED ROWS is specified, then just the modified rows in the row
cache are checkpointed each time.

If the target of the checkpoint operation is BACKING FILE, then the RCS
process writes the source row cache entries to the backing (.rdc) files. The row
cache LOCATION, ALLOCATION, and EXTENT clauses are used to create the
backing files. Upon recovery from a node failure, the database recovery process is
able to re-populate the in-memory row caches from the rows found in the backing
files.

If the target is DATABASE, then the target rows (only UPDATED ROWS
is allowed) are written back to the database. The row cache LOCATION,
ALLOCATION, and EXTENT clauses are ignored. Upon recovery from a node
failure, the database recovery process has no data on the contents of the row
cache. Therefore, it does not re-populate the in-memory row caches.

This CHECKPOINT clause overrides the database level CHECKPOINT clause.

B.3.3.0.6 LARGE MEMORY IS ENABLED/LARGE MEMORY IS DISABLED
Specifies whether or not large memory is used to manage the row cache. Very
large memory (VLM) allows Oracle Rdb to use as much physical memory as is
available. It provides access to a large amount of physical memory through small
virtual address windows.

Use LARGE MEMORY IS ENABLED only when both of the following are true:

• You have enabled row caching.

• You want to cache large amounts of data, but the cache does not fit in the
virtual address space.

The default is DISABLED.

See the Usage Notes for restrictions pertaining to the very large memory (VLM)
feature.

B.3.3.0.7 ROW REPLACEMENT IS ENABLED/ROW REPLACEMENT IS
DISABLED Specifies whether or not Oracle Rdb replaces rows in the cache.
When the ROW REPLACEMENT IS ENABLED clause is used, rows are
replaced when the row cache becomes full. When the ROW REPLACEMENT
IS DISABLED clause is used, rows are not replaced when the cache is full. The
type of row replacement policy depends upon the application requirements for
each cache.

The default is ENABLED.

B.3.3.0.8 LOCATION IS directory-spec Specifies the name of the default
backing store directory to which all row cache backing files are written. The
database system generates a file name automatically (row-cache-name.rdc) for
each row cache backing file it creates when the RCS process first starts up.
Specify a device name and directory name only, enclosed within single quotation
marks. By default, the location is the directory of the database root file.

This LOCATION clause overrides a previously specified location at the database
level.

B–16 Row Cache Statements

This clause is ignored if the row cache is defined to checkpoint to the database.

B.3.3.0.9 NO LOCATION Removes the location previously specified in a
LOCATION IS clause for the database for the row cache backing file. If you
specify NO LOCATION, the row cache backing file location becomes the directory
of the database root file.

This clause is ignored if the row cache is defined to checkpoint to the database.

B.3.3.0.10 NUMBER OF RESERVED ROWS IS n Specifies the maximum
number of cache rows that each user can reserve. The default is 20 rows.

The number of reserved rows parameter is also used when searching for available
slots in a row cache. The entire row cache is not searched on the initial pass.
This parameter is used as the maximum number of rows that are searched for
a free slot. If at least one free slot is found, the insert operation can proceed. If
no free slots are found in this initial search, Oracle Rdb will continue searching
through the cache until it finds a free slot.

B.3.3.0.11 NUMBER OF SWEEP ROWS IS n Specifies the number of modified
cache rows that will be written back to the database to make space available
in the cache for subsequent transactions to insert rows into the cache. It is
recommended that users initially specify the number of sweep rows to be between
ten and thirty percent of the total number of rows in the cache. Users should
then monitor performance and adjust the number of sweep rows if necessary. The
default setting is 3000 rows.

B.3.3.0.12 ROW LENGTH IS n BYTE/ROW LENGTH IS n BYTES Specifies
the size of each row allocated to the row cache. Rows are not cached if they are
longer than a row cache row. The ROW LENGTH is an aligned longword rounded
up to the next multiple of 4 bytes.

If the ROW LENGTH clause is not specified, the default row length is 256 bytes.
The maximum row length in a row cache area is 65535 bytes.

If the ROW LENGTH clause is not specified, the default row length is 256 bytes.

B.3.3.0.13 SHARED MEMORY IS SYSTEM/SHARED MEMORY IS PROCESS
Determines whether cache global sections are created in system space or process
space. The default is SHARED MEMORY IS PROCESS.

When you use cache global sections created in the process space, you and other
users share physical memory and the OpenVMS Alpha operating system maps
a row cache to a private address space for each user. As a result, all users are
limited by the free virtual address range and each use a percentage of memory in
overhead. If many users are accessing the database, the overhead can be high.

When many users are accessing the database, consider using SHARED MEMORY
IS SYSTEM. This gives users more physical memory because they share the
system space of memory and there is none of the overhead associated with the
process space of memory.

B.3.3.0.14 WINDOW COUNT IS n Specifies the number of virtual address
windows used by the LARGE MEMORY clause.

The window is a view into the physical memory used to create the very large
memory (VLM) information. Because the VLM size may be larger than that
which can be addressed by a 32-bit pointer, you need to view the VLM information
through small virtual address windows.

Row Cache Statements B–17

You can specify a positive integer in the range from 10 through 65535. The
default is 100 windows.

B.3.4 Usage Notes

• If the name of the row cache is the same as any logical area (for example a
table name, index name, storage map name, RDB$SEGMENTED_STRINGS,
RDB$SYSTEM_RECORD, and so forth), then this is a logical area cache and
the named logical area is cached automatically. Otherwise, a storage area
needs to be associated with the cache.

• The CREATE CACHE clause does not assign the row cache to a storage area.
You must use the CACHE USING clause with the CREATE STORAGE AREA
clause of the CREATE DATABASE statement or the CACHE USING clause
with the ADD STORAGE AREA or ALTER STORAGE AREA clauses of the
ALTER DATABASE statement.

• The product of the CACHE SIZE and the ROW LENGTH settings determines
the amount of memory required for the row cache (some additional overhead
and rounding up to page boundaries is performed by the database system).

• The row cache is shared by all processes attached to the database on any one
node.

• The following are requirements when using the row caching feature:

– After-image journaling must be enabled

– Fast commit must be enabled

– Number of cluster nodes must equal 1

• Use the SHOW CACHE statement to view information about a cache.

B–18 Row Cache Statements

C
Release Notes Relating to the Row Cache

Feature

This section describes software errors that were fixed by Oracle Rdb7 Release
7.0.1.5 and 7.0.1.6 relating specifically to the row cache feature.

C.1 Software Errors Fixed That Apply to All Interfaces
C.1.1 RCS Maximum Log File Size Control Logical

In prior versions of Oracle Rdb7, the Row Cache Server (RCS) process log file
(enabled via the RDM$BIND_RCS_LOG_FILE logical name) would continue to
grow until the database was shut down. This would be a significant problem
because when the disk containing the log file would become full, the RCS process
could fail.

The RCS process log file maximum size can now be controlled with the system
logical name RDM$BIND_RCS_LOG_REOPEN_SIZE. This logical, when defined
before the database is opened, limits the allocated size of the RCS log file. When
the log file allocation reaches the specified number of disk blocks, the current log
file will be closed and a new log file opened. Older log files can be archived or
purged as needed.

This problem has been corrected in Oracle Rdb7 Release 7.0.1.5.

C.1.2 New RMU /SET ROW_CACHE [/ENABLE | /DISABLE] Command
A new RMU /SET command ‘‘ROW_CACHE’’ has been added to allow the
database Row Cache feature to be enabled or disabled without requiring that
the database be opened. This command requires exclusive database access (the
database can not be open or be accessed by other users).

Valid qualifiers for the ‘‘RMU /SET ROW_CACHE’’ command are:

• /ENABLE to enable row caching

• /DISABLE to disable row caching

• /LOG to display a log message at the completion of the RMU /SET operation

The /ENABLE and /DISABLE qualifiers are mutually exclusive.

This command has been added to Oracle Rdb7 Release 7.0.1.5.

C.1.3 RCS Clearing "GRIC" Reference Counts
When the Oracle Rdb7 Row Cache feature is enabled, the Row Cache Server
(RCS) process will attempt to clear the reference count field in a data structure
called a GRIC. The reference count will be cleared periodically based on the
number of DBR (Database Recovery) processes run. If enough DBR processes
have run, a Row Cache "sweep" request can trigger the reference count clearing.

Release Notes Relating to the Row Cache Feature C–1

When a process that uses a row cache abnormally terminates (via STOP/ID, for
example), it can leave references in the cache that would prevent rows in the
cache from being removed. This can cause the cache to become full of rows that
are not really referenced by any process though they appear to be referenced due
to an elevated reference count.

A Row Cache "sweep" request to the RCS process indicates that a cache is "full"
and there is no more room to insert new rows into the cache. When the RCS
process receives the sweep request, it will see if a number of DBRs have run since
the last sweep. If enough DBRs have run (the default is 25 DBRs since the last
sweep for the cache), the RCS will initiate a "Release GRICs" operation.

This operation can have a minor performance impact to users of the cache and
can also delay the RCS from performing other operations. This is why it is a
periodic event.

The system logical name RDM$BIND_RCS_CLEAR_GRICS_DBR_CNT can be
used to control the number of DBRs that must elapse before the RCS will initiate
clearing of the GRIC reference counts. The maximum value of the logical name is
"100000". The default value (if the logical name is not defined) is "25". Defining
the logical name with a value of "0" disables clearing the reference counts.

For most systems, the default value is adequate. However, systems with very
frequent database recoveries may need a high value of the logical name to reduce
the frequency that the reference counts are cleared. The RCS process log file can
be used to determine how often the reference counts are cleared.

This new logical name has been included in Oracle Rdb7 Release 7.0.1.5.

C.1.4 Row Cache RDC File Name Change
In the previous release of Oracle Rdb7, the Row Cache backing store file used a
file type of ‘‘.RDC’’. This behavior caused a file name conflict when a database was
replicated either with the RMU/COPY command or when using the ‘‘Hot Standby’’
feature.

This conflict has been resolved in Oracle Rdb7 Release 7.0.1.5. The Row Cache
backing store file type has been extended to include the root file device name and
file ID in a BASE32 format (where valid characters are 0 to 9 and A to W).

For example, a row cache backing store file name may now have a format similar
to the following:

EMPIDX_10_0.RDC_0C1H85848NO00063228L;1

In this example, the value ‘‘0C1H85848NO00063228L’’ represents the device
name and file ID of the root file for the database. The file type is always prefixed
with ‘‘.RDC_’’ All Row Cache backing store files for a database have this same
exact file type. Another database using the same location for backing store files
would use a different file type (perhaps ‘‘.RDC_4D87HD234FSD0063228L’’).

To associate a database with a Row Cache backing store file, the ‘‘RMU /DUMP
/CACHE_FILE’’ command can be used to display the Row Cache backing store file
header when the full name of the database root file is stored.

Because existing Row Cache backing store files have a file type of ‘‘.RDC’’, if
you use the RDM$BIND_RCS_KEEP_BACKING_FILES logical to keep existing
backing store files from being deleted when a database is closed, you should
deassign the logical prior to closing the database(s) in preparation for installing
Oracle Rdb7 Release 7.0.1.5. This will allow existing ‘‘.RDC’’ files to be deleted
properly.

C–2 Release Notes Relating to the Row Cache Feature

C.1.5 VLM or System Space Buffer Corruption
Very rarely, small portions of cache memory could be incorrectly left un-initialized
when using the Row Cache Feature with the Very Large Memory (VLM) or
System Space Buffers (SSB) options on multi-processor (SMP) Alpha systems.

This problem could occur more often with large caches, under heavy system loads,
on multi-processor systems. If the process that was initializing a row cache was
rescheduled onto another CPU, it was possible that the CPU translation buffer
(TB) on one of the processors was not correctly invalidated. If the process were
to be rescheduled back on to the original processor, there was an outside chance
that a memory page within the cache would not be correctly erased.

Because the first process to access a row cache creates and initializes the cache, a
possible workaround is to stop all but the primary CPU on the system while row
caches are being initially accessed.

This problem has been corrected in Oracle Rdb7 Release 7.0.1.6. During VLM
or SSB creation, the process prevents itself from being rescheduled while it is
invalidating the system translation buffers.

C.1.6 Invisible Row After Erase and Store With Row Cache
If a row cache was created with a row length smaller than the largest data row
to be stored and if the row had previously been erased from the cache, it was
possible for the row to become ‘‘invisible’’.

The following example demonstrates the problem.

SQL> create data file foo
cont> number of cluster nodes is 1
cont> reserve 1 cache slot;
SQL> create table c1 (t1 char (100));
SQL> commit;
SQL> disconnect all;
SQL> alter data file foo
cont> row cache enable
cont> add journal j1 file j1
cont> journal enable (fast commit enable)
cont> add cache c1 row length is 50;
SQL> attach ’file foo’;
SQL> insert into c1
cont> values (’ab’)
cont> returning dbkey;

DBKEY
47:554:0

1 row inserted
SQL> commit;
SQL> delete from c1;
1 row deleted
SQL> commit;
SQL> disconnect all;
SQL> attach ’file foo’;
SQL> insert into c1
cont> values (’abababababababababaababababababababababababababa’)
cont> returning dbkey;

DBKEY
47:554:0

1 row inserted
SQL> commit;
SQL> select * from c1;
0 rows selected
SQL> commit;

Release Notes Relating to the Row Cache Feature C–3

This problem has been corrected in Oracle Rdb7 Release 7.0.1.6. The erased
row is now correctly detected and the row that is too large for the cache is now
returned from disk.

C.1.7 Overriding RCS Checkpoint Timer Interval
In the prior versions of Oracle Rdb7, the Row Cache Server (RCS) process’
checkpoint timer interval could be overridden by the system logical "RDM$BIND_
CKPT_TIME". This is the logical that allows the fast commit checkpoint timer
interval to be overridden. Using the same logical for the RCS checkpoint timer
was confusing and error prone.

Beginning with Oracle Rdb7 Release 7.0.1.6, the RCS process’ checkpoint timer
interval can be overridden with a new system logical name, "RDM$BIND_RCS_
CKPT_TIME".

If neither this logical nor the ‘‘ROW CACHE IS ENABLED (CHECKPOINT
TIMED EVERY n SECONDS)’’ database clause is specified, then the RCS process
will use the "RDM$BIND_CKPT_TIME" logical name or its associated dashboard
value.

If RCS still has a zero checkpoint timer interval, then it will default to a fixed 15
minute interval.

C.1.8 Refresh RCS Metadata Information
In the prior versions of Oracle Rdb7, the Row Cache Server (RCS) process
would maintain its metadata structures across checkpoint and sweep requests.
While the RCS process was active, however, Oracle Rdb7 would allow tables,
indices, and storage areas to be dropped and recreated. In these situations, it
was possible for the RCS process to not notice the metadata changes and use
the original metadata to write modified records from the row caches back to the
original database storage areas. This would result in database corruptions and
bugcheck dumps.

In Oracle Rdb7 Release 7.0.1.6, the RCS now recognizes that if it is not holding
the corresponding logical or physical area locks, its metadata may be obsolete.
When this occurs, the RCS process refreshes its metadata structures from the
AIP and root file information.

C.1.9 RCS ACCVIO When Checkpointing All Row Caches to Database
Begining with Release 7.0.1.5 of Oracle Rdb7, the Row Cache Server (RCS)
process would inadvertently access violate after completing its final checkpoint to
the database as part of a database shutdown operation. It was access violating
while trying to clean up a data structure that had not been allocated.

This problem does not corrupt the database. Simply reopen the database and
database access will be fine until the database is closed again, whereupon this
problem will be hit again. A workaround to this problem is to have at least one
row cache checkpoint to a backing file.

This problem has been corrected in Oracle Rdb7 Release 7.0.1.6.

C–4 Release Notes Relating to the Row Cache Feature

D
Known Problems and Restrictions Relating to

the Row Cache Feature

This section describes known problems and restrictions relating to the row cache
feature and includes workarounds where appropriate. Unless otherwise noted, all
notes apply to all platforms.

D.1 Known Problems and Restrictions
D.1.1 RMU Online Verification Operations and Row Cache

When using row caches, some RMU online verification operations may report
errors in the database structure and may not be generally reliable in all
verifications. These errors may be due to RMU validating the on-disk database
structure and not the actual logical database structure including the row cache
contents.

For example, one of the verifications that is performed by RMU/VERIFY is to
ensure that system records in mixed format areas have a ‘‘system record’’ record
ID. However, when a physical row cache is being used, the row on the database
page may be marked as ‘‘reserved by record cache’’ because the row has been
modified in the row cache but has not yet been flushed to disk.

In the following example, the database ID of 00002011 refers to the ‘‘reserved by
record cache’’ record type and 00002001 refers to the system record type:

$ RMU/VERIFY/ONLINE DKA0:[DB]MYDB.RDB;1
%RMU-E-PAGSYSREC, area INDEX_MIXED_AREA, page 3

system record contains an invalid database ID
expected: 00002001 (hex), found: 00002011 (hex)

D.1.2 Limitation: Online RMU /VERIFY and Row Cache
Performing online RMU /VERIFY operations on a database with the Row Cache
feature enabled may report errors even though there is actually no problem.
RMU /VERIFY is not fully integrated with the Row Cache feature in this release.
Because of this, if there is database modification activity occurring while the
verify is running, misleading error messages may be displayed.

If possible, limit online RMU /VERIFY operations to times when the database is
not being actively modified or perform an offline database verification.

This problem will be corrected in a future Oracle Rdb release.

Known Problems and Restrictions Relating to the Row Cache Feature D–1

D.1.3 Adding Row Caches Requires Exclusive Database Access
Adding a row cache with the ALTER DATABASE ADD CACHE command now
requires exclusive database access.

Previously, it was possible for a new row cache to be added online. This new cache
would be seen by users attaching to the database after the cache was created, but
users that were already attached to the database would not be able to access the
cache and would return results from the database without referencing the cache.
This situation resulted in database corruption.

D.1.4 Conflicts When Caching Metadata and Executing Certain SQL Database
Operations

When caching metadata, you will experience conflicts when executing database
operations through SQL that require exclusive database access. For example,
adding new row caches or dropping existing ones requires exclusive database
access. When the SQL command is parsed, the Oracle Rdb system tables are
queried. This access to the system tables creates the row caches and causes the
RCS process to come up to manage those row caches. As a result, the database
now has another ‘‘user’’, the RCS process. This causes the exclusive database
operation to fail.

To resolve this, you must first turn off row caching temporarily using the RMU
Set command specifying the Row_Cache and Disabled qualifiers. Then, perform
the SQL operation that requires exclusive database access. Finally, re-enable
row caching using the RMU Set command with the Row_Cache and Enabled
qualifiers.

D–2 Known Problems and Restrictions Relating to the Row Cache Feature

E
Logical Names Relating to the Row Cache

Feature

This section describes logical names relating specifically to the row cache feature
and explains when and how to use them. Note that the fields following the logical
name list the table name in which the logical must be defined and the value of
the logical with defaults given where applicable.

E.1 RDM$BIND_CKPT_FILE_SIZE
RDM$BIND_CKPT_FILE_SIZE LNM$FILE_DEV INTEGER

This logical represents the percentage of the row cache size that you want the
backing file allocation to be. Applied to all backing files. This overrides the
backing file’s allocation specified in the CREATE/ADD CACHE definition.

E.2 RDM$BIND_CKPT_TIME
RDM$BIND_CKPT_TIME LNM$FILE_DEV INTEGER (Default=0)

This logical represents the frequency of RCS checkpoint. It overrides the "Alter
database row cache is enabled (checkpoint timed every N seconds)" value.

E.3 RDM$BIND_DBR_UPDATE_RCACHE
RDM$BIND_DBR_UPDATE_RCACHE LNM$SYSTEM_TABLE 0 or 1(Default)

If the logical is set to 0, during recovery from node failure, don’t repopulate
in-memory row caches from their backing files (only recover the database). If
the logical is set to 1 (the default), during recovery from node failure, repopulate
in-memory row caches from backing files and from REDO operations.

E.4 RDM$BIND_RCACHE_INSERT_ENABLED
RDM$BIND_RCACHE_INSERT_ENABLED LNM$FILE_DEV 0 or 1(Default)

This is a process logical. If the logical is set to 0, this process cannot insert any
rows into the row caches; this process can only use what is already there. If
the logical is set to 1 (the default), the process can insert new rows into the row
cache, if they fit.

E.5 RDM$BIND_RCACHE_LATCH_SPIN_COUNT
RDM$BIND_RCACHE_LATCH_SPIN_COUNT LNM$FILE_DEV INTEGER (Default=1024)

This logical represents how many iterations to retry getting the row cache latch
before hibernating. This consumes CPU but can acquire the latch faster. Set in
1000s.

Logical Names Relating to the Row Cache Feature E–1

E.6 RDM$BIND_RCACHE_RCRL_COUNT
RDM$BIND_RCACHE_RCRL_COUNT LNM$FILE_DEV INTEGER (Default=0)

This logical represents the number of rows to reserve when acquiring empty
slots in a row cache. This overrides the ‘‘NUMBER OF RESERVE ROWS IS N’’
clause.

E.7 RDM$BIND_RCS_BATCH_COUNT
RDM$BIND_RCS_BATCH_COUNT LNM$SYSTEM_TABLE INTEGER (Default=3000)

This logical represents the number of rows RCS attempts to write out at a time
during the course of a checkpoint or sweep.

E.8 RDM$BIND_RCS_CARRYOVER_ENABLED
RDM$BIND_RCS_CARRYOVER_ENABLED LNM$SYSTEM_TABLE 0 or 1(Default)

If the logical is set to 0, RCS doesn’t honor carryover locks for logical/physical
areas. It continues to hold them (good for RCS performance, but prevents
exclusive access to these logical/physical areas). If the logical is set to 1 (the
default), RCS honors carryover locks and gives up logical/physical area locks it is
holding that it is not using but that simply remain from a prior operation.

E.9 RDM$BIND_RCS_CKPT_COLD_ONLY
RDM$BIND_RCS_CKPT_COLD_ONLY LNM$SYSTEM_TABLE 0(Default) or 1

If the logical is set to 0 (the default), checkpoint/sweep all marked records in a
row cache. If the logical is set to 1, only checkpoint records marked before the
PRIOR ckpt interval (only checkpoint the older/colder data, but this also keeps
the RCS ckpt farther behind causing more AIJ to read during REDO).

E.10 RDM$BIND_RCS_CKPT_BUFFER_CNT
RDM$BIND_RCS_CKPT_BUFFER_CNT LNM$SYSTEM_TABLE INTEGER (Default=15)

This logical represents the number of buffers to use to write records to backing
files during checkpoints.

E.11 RDM$BIND_RCS_CKPT_TIME
RDM$BIND_RCS_CKPT_TIME LNM$SYSTEM_TABLE INTEGER (Default=0)

This logical overrides the RCS process’ checkpoint timer interval. This logical
was added in Release 7.0.1.6. If neither this logical nor the ‘‘ROW CACHE IS
ENABLED (CHECKPOINT TIMED EVERY n SECONDS)’’ database clause is
specified, then the RCS process will use the ‘‘RDM$BIND_CKPT_TIME’’ logical
name or its associated dashboard value. If RCS still has a zero checkpoint timer
interval, then it will default to a fixed 15 minute interval.

E.12 RDM$BIND_RCS_CLEAR_GRICS_DBR_CNT
RDM$BIND_RCS_CLEAR_GRICS_DBR_CNT LNM$SYSTEM_TABLE INTEGER (Default=25)

This logical represents the frequency (based on the number of DBR processes
that run) with which the RCS will attempt to release references in the cache left
by abnormally terminated processes. For each sweep request for a cache, if at
least this number of DBR processes have run since the last sweep for the cache,
the RCS will initiate a "Release GRICs" operation. This operation can have a
minor performance impact to users of the cache and can also delay the RCS from

E–2 Logical Names Relating to the Row Cache Feature

performing other operations. This is why it is a periodic event. The maximum
value of the logical is 100000. The default value is 25. Defining the logical name
with a value of 0 will disable the clearing of reference counts.

E.13 RDM$BIND_RCS_CREATION_IMMEDIATE
RDM$BIND_RCS_CREATION_IMMEDIATE LNM$SYSTEM_TABLE 0(Default) or 1

If the logical is set to 0 (the default), for automatic open database, create RCS
process on first reference to a row cache. If the logical is set to 1, for automatic
open database, create RCS process on initial attach. If the logical is set to 1, for
manual open database, RCS is started immediately.

E.14 RDM$BIND_RCS_KEEP_BACKING_FILES
RDM$BIND_RCS_KEEP_BACKING_FILES LNM$SYSTEM_TABLE 0(Default) or 1

If the logical is set to 0 (the default), the RCS creates/deletes backing files on
each startup/shutdown. If the logical is set to 1, the RCS retains backing files on
shutdown and reuses them on startup.

E.15 RDM$BIND_RCS_LOG_FILE
RDM$BIND_RCS_LOG_FILE LNM$SYSTEM_TABLE File Name

This logical specifies the location and name of the optional RCS process log file. If
the logical is not defined, no RCS logging is done. It is recommended that logging
be turned on. If a location is not specified along with the file name, the log file is
created in the same location as the database root file.

E.16 RDM$BIND_RCS_LOG_HEADER
RDM$BIND_RCS_LOG_HEADER LNM$SYSTEM_TABLE 0 or 1(Default)

If the logical is set to 0, don’t insert header sections in RCS log file. If the logical
is set to 1 (the default), insert normal header sections into the RCS log file.

E.17 RDM$BIND_RCS_LOG_REOPEN_SIZE
RDM$BIND_RCS_LOG_REOPEN_SIZE LNM$SYSTEM_TABLE INTEGER (Default=0)

This logical represents the maximum block size of the RCS log file before the RCS
opens a new log file.

E.18 RDM$BIND_RCS_LOG_REOPEN_SECS
RDM$BIND_RCS_LOG_REOPEN_SECS LNM$SYSTEM_TABLE INTEGER (Default=0)

This logical, when defined before the database is opened, causes the RCS log
file to be reopened after every ’n’ seconds as specified by the value of the logical
name. If the value of the logical is 0 or it is not defined, then the RCS Log file is
not reopened based on time. The maximum value allowed is 31449600 (which is
one year noted in seconds).

E.19 RDM$BIND_RCS_PRIORITY
RDM$BIND_RCS_PRIORITY LNM$SYSTEM_TABLE INTEGER

This logical represents the base priority of the RCS process.

Logical Names Relating to the Row Cache Feature E–3

E.20 RDM$BIND_RCS_SWEEP_COUNT
RDM$BIND_RCS_SWEEP_COUNT LNM$SYSTEM_TABLE INTEGER

This logical represents the number of rows to sweep. It overrides the "NUMBER
OF SWEEP ROWS IS N" clause.

E.21 RDM$BIND_RCS_VALIDATE_SECS
RDM$BIND_RCS_VALIDATE_SECS LNM$SYSTEM_TABLE INTEGER

This logical defines the number of seconds between each cache validation pass. A
value in the range of 300 (5 minutes) to 86400 (24 hours) is suggested. A value
of 0 disables the cache validations. Once initiated, the interval can be re-set by
changing the logical name definition; the logical is translated at each validation.

E.22 RDM$BIND_RUJ_GLOBAL_SECTION_ENABLED
RDM$BIND_RUJ_GLOBAL_SECTION_ENABLED LNM$SYSTEM_TABLE 0 or 1

(Default=1 if row cache enabled)
(Default=0 if row cache disabled)

If the logical is set to 0, don’t place RUJ I/O buffers in global section so DBR can
see them. If the logical is set to 1, place RUJ I/O buffers in global section so DBR
can see them.

E–4 Logical Names Relating to the Row Cache Feature

